Application Checklist

The following documents are required and must be submitted via Smartsheet in one single PDF document, not to exceed 25 MB. The Signature Page may be submitted separately if there are issues combining with the single PDF document. Keep the file name brief, as files are corrupted when file names are too long. Refer to the Grant Application Guide for additional information and/or samples. Failure to include any of the required documents will result in a reduced application score.

PDF documents should be submitted in their fillable PDF formats. The original file formats will be required upon grant award.

Required Application Documents		
(*)	Ensure these items are completed prior to submitting to Caltrans via Smartsheet	
	Application Cover Sheet (complete in Smartsheet and submit with single PDF document)	
	Signature Page (Electronic signatures accepted; may submit as a separate file if there are issues with combining with single PDF document)	
	Application Narrative	
	Scope of Work	
	Cost and Schedule	
	Third Party In-Kind Valuation Plan (if applicable, required upon award)	
-	Map of Project Area	
Supp	plemental Documentation (not required)	
-	Graphics of Project Area (when applicable)	
	Letter(s) of support	
	Data	

PAR	PART A. APPLICATION INFORMATION				
Gran	t Category (se	lect only one)			
Clima	ate Adaptation	1 (MPOs, RTPAs, Transit Agencies, Cities, C	Counties, Tribes, c	other Public Transportation Planr	ning Entities)
х	11.47% Loca	l Match requirement (Not Applicat	ble to Native A	merican Tribal Governments	;)
Susta Transit Plannii	inable Comm Agencies, Cities, ng Entities)	unities (MPOs with sub-applicant, RTPAs, Counties, Tribes, other Public Transportatio	, Strate on Strate Agenci	gic Partnerships (MPOs & RT gic Partnerships Transit (M es only)	PAs only) POs, RTPAs & Transit
	Sustainable ((11.47% Local Native Americ	Communities Competitive Match requirement) **Not applicabl an Tribal Governments**	le to	Strategic Partnerships (F (20% Local Match requiren	HWA SPR Part I) nent)
	Sustainable ((11.47% Local Native Americ	Communities Competitive Technie Match requirement) **Not applicabl an Tribal Governments**	cal le to	Strategic Partnerships Tra (11.47% Local Match requi	ansit (FTA 5304) rement)
Appli	ication Submit	tal Type (more than one may be	selected)		
New		Prior Phases	Re-Su	bmittal	
x	New	Continuation of a prior proj If so, list the Grant FY and p title below.	iject. project	Re-submittal from a prior g	rant cycle.
'n	Application			How many times has an ap submitted for this project, i	oplication been ncluding this one?
	_				
PAF	RT B. PROJE	CT INFORMATION			
Proje	ct Title and Lo	cation			
Proje	ct Title	Eastern Fresno County Climate Ada	aptation Plan	÷	
Proje (City)	ct Location	Eastern Fresno County Unincorporated Communities	Project Location (County) Fresno County		
Fund	ing Informatio	n			
1. Is N	the applicant latch Calculat	proposing to meet the minimum for to determine the appropriate	local match match. Mate	requirement or an over-n ch Calculator (Posted on	natch? Use the STPG Website)
\boxtimes	Minimum Local Match 🛛 Over-Match				
2. W (N A	 What is the source of Local Match funds being used? (MPOs – Federal Toll Credits, PL, and FTA 5303 <u>cannot</u> be used to match Sustainable Communities Competitive or Adaptation Planning grants) 				
	Local TranspOther, spec	oortation Funds 🛛 Local Sales ify:	Tax 🗆 Spo	ecial Bond Measures	
Gi R	rant Funds equested	Local Match Local Match (Cash) (In-Kind)	h To Local	otal % Match Local Match	Total Project Cost

\$194,341

11.47%

\$1,500,000

\$194,341

\$0.00

\$1,694,341

Project Description (3-5 Sentences Max.)			
Insert Application Narrative: 1. Project Description	A study of the eastern unincorporated communities (east of Highways 99 and 41 to the County line) and overlapping incorporated communities will be performed to plan for the resilience of transportation infrastructure due to flooding, drought, wildfire, tree mortality, and other climate-related causes. When storm events occur, the roads can flood and impact thousands of residents trying to get to school, work, and access to other vital resources. This area of study was chosen due to its high risk for flash floods, wildfires, road failures, and high concentration of rural communities (see Attachment A). Deliverables include a report with scoping, cost estimates, and a list of priority projects, with feasibility of recommended actions, identified through a scientific and public process that considers cost, equity, long- term resiliency, and potential environmental impact. The study is in alignment with the Fresno County Hazard Mitigation Plan, the California Transportation Plan, the California Climate Adaptation Strategy, and Climate Action Plan for Transportation Infrastructure (CAPTI). The primary goal of the study is to identify the best ways to prepare, respond, manage, adapt, and maintain in the wake of the affects of climate change.		
Project Type			
Choose the Project Typ for examples. Select a	be that best represents the focus of the proposed project. See Grant Application Guide maximum of two project types.		
🗆 Active Transp	portation (Bicycle and Pedestrian)		
🛛 Climate Cha	nge (Infrastructure Adaptation, Vulnerability and Resiliency)		
🗆 Complete Str	reets (Multimodal specific type)		
🗆 Corridor (Loc	al Streets or Highways)		
□ Freight/Good	ds Movement		
🗆 General Plan	-Related (Circulation Element, Land Use Element, Specific Plan)		
🗆 Multimodal (I	Multimodal (Motorized and Active Transportation)		
🗆 Safety (Visior	\Box Safety (Vision Zero, Safe Routes to Schools)		
🗆 Technical (M	Technical (Modeling, VMT Mitigation, ZEV Infrastructure, ZEB Transition, etc.)		
🗆 Transit (Bus, L	ight Rail, and Commuter Rail Service)		
🗆 Other, specif	y:		

Under-Resourced Community Definitions

- ⊠ Native American Tribal Governments
- □ Regionally/Locally Defined Under-Resourced Communities
- □ At/Below 80% Assembly Bill 1550 (Gomez, Statutes of 2016)
- □ At/Above 75% California Department of Education, Free or Reduced Priced Meals Data
- ⊠ At/Above 75% CalEnviroScreen Version 4.0
- At/Below 25% California Healthy Places Index

PART C. CON	TACT INFORMATON*		
	Primary Applicant	Sub-Applicant	Sub-Applicant
Organization (Legal name)	County of Fresno		
Dept./Division	Public Works and Planning, Design		
Street Address	2220 Tulare Street, 6th Floor		
City	Fresno		
Zip Code	93721		
Phone Number	(559) 600-4109		
Executive Director Name	Steven E. White		
Title	Director		
Executive Director E-mail	stwhite@fresnocountyca.gov		
Financial Manager Name	Lemuel Asprec		
Title	PWP Business Manager		
Financial Manager E-mail	lasprec@fresnocountyca.gov		
Contact Person Name	Erin Haagenson		
Title	Program Manager		
Contact Phone Number	(559) 600-9908		-
Contact E-mail	ehaagenson@fresnocountyca,gov		

*Use additional pages if necessary.

PART D. COMPLIANT HOUSING ELEMENT

City/County Primary/Sub-Applicants for Sustainable Communities Grants	Yes	No
Does the City/County have a compliant Housing Element? If No, explain the current status:	х	
Has the City/County submitted Annual Progress Report to the California Department of Housing and Community Development for calendar years 2022 and 2023?	х	

PART E. OTHER FUNDING PROGRAMS

Applicants may leverage other program funds for this planning grant, as long as the activities are eligible.

	Yes	No	N/A
Is the applicant applying for the Governor's Office of Planning and Research (OPR) Climate Adaptation Planning Grant Program? Applicants should not submit the same project application to both funding programs. However, applicants may propose to leverage funds from one funding program to another. For instance, an applicant with a large project may propose to fund one component with Caltrans funds, and another with OPR funds. Applicants may also propose two entirely different projects to each funding program.		х	
If yes, identify the differences between each proposal, and briefly summarize the leverage opportunity if awarded both Caltrans and OPR funding:			
Is the applicant applying for any other funding programs to complete this project? If yes, list them here:		x	

Sustainable Transportation Planning Grant Program

GRANT APPLICATION COVER SHEET

PART F. LEGISLATIVE INFORMATION

Use the following link to determine the appropriate legislative members in the Project area.

Search by address: <u>http://findyourrep.legislature.ca.gov/</u>

	State Senator(s)		Assembly Member(s)
District	Name	District	Name
12	Shannon Grove	8	David Tangipa
14	Anna Caballero	31	Joaquin Arambula
16	Melissa Hurtado	33	Alexandra Macedo
		I.,	
1		1	
		12	

PART G. LETTERS OF SUPPORT

List all letters of support received for the proposed project. Letters should be addressed to the applicant. Letters received after the final application filing date will not be considered.

Name/Agency	Name/Agency
Vong Mouanoutoua, Mayor, City of Clovis	
Robert Phipps, Executive Director, Fresno Council of Governments	
Alma Beltran, Mayor, City of Parlier	
Matthew Tuttle, Mayor, City of Reedley	11
David M. Merritt, General Manager, Kings River Conservation District	
	jer je

Sustainable Transportation Planning Grant Program GRANT APPLICATION SIGNATURE PAGE

If selected for funding, the information contained in this application will become the foundation of the contract with Caltrans.

To the best of my knowledge, all information contained in this application is true and correct. If awarded a grant with Caltrans, I agree that I will adhere to the program guidelines.

Applicant	
Authorized Official (Applicant)	
Print Full Name	
Title	
Signature	Date
Sub Applicant(s)*	
Authorized Official (Sub-Applican	t)
Print Full Name	
Title	
Signature	Date
Authorized Official (Sub-Applican	t)
Print Full Name	
Title	
Signature	Date
Authorized Official (Sub-Applican	t)
Print Full Name	
Title	
Signature	Date

*Use additional pages if necessary.

PART G. APPLICATION NARRATIVE		FY 202 5-26
Project Information		
Organization (legal name)		
Project Title		
Project Area Boundaries		
Project Timeframe (Start and End Dates):		

Application Narrative

1. Project Description (5 points) - Do not exceed the space provided (5 sentences maximum) Briefly summarize project in a clear and concise manner, including why the project is necessary, major deliverables, desired outcomes, parties involved, and alignment with relevant local, regional, and/or State planning efforts.

2A. Project Justification (10 points) - Do not exceed the space provided

- Describe the problem or deficiencies the project is attempting to address, including the climate adaptation need and any other priority needs, as well as how the project will address the identified problems or deficiencies
- Describe the impact of not funding the project
- Describe the public benefits

2A. Project Justification (continued)

2B. Under-Resourced Communities Justification (7.5 points) - Do not exceed the space provided

The tools in the Grant Application Guide, Appendix A, are intended to help applicants define an under-resourced community.

- Explain how the project area or portions of the project area benefit under-resourced communities, including Tribal, local, regional, and rural communities as applicable
- Explain how the proposed project addresses the needs of the communities and how they will benefit from the proposed project, including if the communities informed the scope of the project
- Cite data sources, the tools used, and include a comparison to the statewide thresholds that are established in each tool

2C. Under-Resourced Communities Engagement (7.5 points) - Do not exceed the space provided

See Grant Application Guide, Appendix A. for best practices in community engagement

- Describe how the proposed project will engage under-resourced communities and how the effort was informed by engagement with under-resourced communities, including Tribal, local, regional, and rural communities as applicable
 - o Include specific outreach methods for involving under-resourced communities
- Describe how under-resourced communities will continue to be engages during the next phases after the proposed planning project is complete, including implementation

3. Grant Specific Objectives (Total 40 points)

Integrate the following Grant Program Considerations (Grant Application Guide, Chapter 1.2) in the responses for 3A-D below, as applicable:

- Caltrans Strategic Plan
- California Transportation Plan (CTP)
- Modal Plans that Support the CTP
- Strategic Highway Safety Plan
- Title VI and Environmental Justice
- Climate Action Plan for Transportation Infrastructure
- California Adaptation Strategy
- Master Plan for Aging

3A. Grant Specific Objectives; climate risk and adaptation (10 points) - Do not exceed the space provided

- Explain how the project identifies and assesses climate change impact risks to multimodal transportation infrastructure vulnerabilities to climate change impacts in the project area
- Explain how the project will identify adaptation strategies and specific actions to remedy identified climate related vulnerabilities. Projects and plans should describe short-, medium-, and long-term strategies that will address the overall risk for the entire service life of the asset or capital project using the best available science and guidance.
- Articulate how the project will advance the planning of specific climate adaptation projects, such as developing a cost estimate, pursuing a technical feasibility study for adaptation options, or developing a conceptual design (up to 30%)
- When applicable, explain how the project includes economic analysis and/or cost-benefit analysis of identified adaptation strategy or strategies

3A. Grant Specific Objectives; climate risk and adaptation (continued)

3B. Grant Specific Objectives; co-benefits (10 points) - Do not exceed the space provided

- Identify co-benefits of the adaptation work, such as benefits to public health, natural ecosystems, air quality, social equity, the economy, or reductions in greenhouse gas (GHG) emissions.
 - If reductions in GHG emissions are identified as a co-benefit, explain how the project advances transportation related GHG emission reductions specifically through different project types/strategies (e.g., mode shift, demand management, accessibility, etc.)
- Describe if and how nature-based solutions will be integrated into the proposed project
- Describe how adaptation needs of environmental resources in proximity to the transportation system such as coastal resources like tidal marsh or beaches, wildlife connectivity, wetlands, or fish passage needs are considered in the proposed project (if applicable)

3C. Grant Specific Objectives; partnerships and stakeholder process (10 points) - Do not exceed the space provided

- Explain how the project demonstrates on-going collaboration and partnerships between sectors and jurisdictions, and across levels of government at a regional scale
- Explain if the project also includes collaboration and partnerships with diverse external stakeholders such as businesses, non-governmental agencies, federal, state, or local agencies, community-based organizations, and community residents
- Explain how the project includes a multistakeholder process that provides an opportunity for meaningful community engagement from communities potentially impacted by any project identified or developed as part of the planning grant

3D. Grant Specific Objectives; alignment with other plans and State Goals (10 points) - Do not exceed the space provided

- Explain how the project is consistent with priorities, goals, and actions of the California State Adaptation Strategy, follows State guidance on adaptation planning, and is consistent with any applicable local/regional resilience planning.
- Articulate if the project will identify ways to incorporate transportation-related climate adaptation needs into existing transportation plans, specifically how the project will lead to the identification and development of capital projects that can be programmed as part of local or regional plans
- Explain how the project is in alignment with or augments existing plans, including climate action/adaptation plans, hazard mitigation plans, safety elements of general plans, resilience improvement plans, and/or Coastal Act/Certified Local Coastal Program plans
- Explain how the proposed project addresses public access and Complete Streets needs

4. Project Management (Total 30 points)

See Scope of Work and Cost and Schedule samples and checklists for requirements (Grant Application Guide, Appendix B), also available on the Caltrans grants website: https://dot.ca.gov/programs/transportation-planning/division-of-transportation-planning/ regional-and-community-planning/sustainable-transportation-planning-grants

4A. Scope of Work (15 points)

4B. Cost and Schedule (15 points)

Scope of Work Checklist

The Scope of Work (SOW) is the official description of the work that is to be completed during the contract. Tasks 1-6 outlined in the SOW are for illustrative purposes only. **Applications with missing components will be at a competitive disadvantage.** Please use this checklist to make sure your Scope of Work is complete.

Scop	e of Work Checklist
(√)	Ensure these items are completed prior to submitting to Caltrans
1	Use the Fiscal Year 2025-26 template provided
1	Include the activities discussed in the grant application
✓	List all tasks using the same title as stated in the Project Cost and Schedule
~	Include task numbers in accurate and proper sequencing, consistent with the Cost and Schedule
✓	Exclude sub-task numbers; only include sub-headings
✓	Exclude tasks for project management and/or staff/consultant coordination; these activities should be spread among relevant tasks
✓	Include a thorough Introduction to describe relevant background, related planning efforts, the project and project area demographics, including a description of the under-resourced community involved with the project, if applicable
✓	Include a thorough and accurate narrative description of each task
¥	 Task 01 is a required task. It must be titled "Project Administration", it cannot exceed 5% of the grant award amount, and only the grantee and sub-recipient(s) can charge against this Task. This Task must only include the following activities and deliverables: Caltrans and grantee Project kick-off meeting at the start of the grant Invoicing and quarterly reporting to Caltrans DBE Reporting (federal grants only)
~	Include Task 02 for the procurement of a consultant (if needed). This task is for the grantee and sub-applicant(s) only.
~	Include detailed public participation and services to diverse communities in the Public Outreach Task (excluding technical projects)
~	Identify public outreach strategies in a manner that provides flexibility and allows for a diverse range of outreach methods (both in-person and virtual), excluding technical projects
✓	Include a Task(s) for a Draft and Final product. The draft plan must include an opportunity for the public to provide feedback (excluding technical projects).
✓	Include a summary of next steps your agency will take towards implementing the project in the Final Product
 ✓ 	List achievable project deliverables for each Task
~	EXCLUDE environmental, complex design, engineering work, and other ineligible activities outlined in the Grant Application Guide

SCOPE OF WORK

Project Information		
Grant Category	Climate Adaptation	
Grant Fiscal Year	FY 2025-26	
Project Title	Eastern Fresno County Climate Adaptation Plan	
Organization (Legal name)	County of Fresno, Department of Public Works and Planning	

Disclaimer

Agency commits to the Scope of Work below. Any changes will need to be approved by Caltrans prior to initiating any Scope of Work change or amendment.

Introduction

The eastern half of Fresno County is dominated by the Sierra Nevada mountains, where many rivers and small tributaries flow into the Valley. In the 19th century, before the modern era of agriculture and development of the Central Valley began, the region was a floodplain with a Mediterranean Climate. As the area became populated and agriculture thrived, eventually it became necessary to control the rivers during the rainy seasons to mitigate flood hazards. This prompted the establishment of the California State Water Reclamation Project (CSWRP), a network of canals, pipelines, reservoirs, and hydroelectric power facilities that stretch over 700 miles all the way from the northern Sacramento Valley to the Southern San Joaquin Valley and ensured that the water could be stored and delivered to farmers and at the same time protect the population from annual storm flooding, and generate power in the process.

California has been through its share of droughts, and, along with water conservation efforts, this network has seen us through very dry spans of time. Unfortunately, those times will become more frequent with the changing climate, which means warmer, drier winters where there is less snowpack and, therefore, less water for our use during the drier months. Hotter summers not only impact the conditions of both the soil and pavement, but when it finally rains in the winter, the soil cannot absorb the deluge of water and, consequently, flash flooding risks increase. As reported by the Environmental Protection Agency's climate change impact on transportation, extreme hot weather can lead to cracks in pavement, and water getting into the cracks leads to further deterioration and road washouts. We could see warmer storms move over the region in the winter, which means a greater risk of flash flooding in the mountain areas and no snow, which will affect our water supply. And drier conditions set up the mountain areas for wildfire risk, whether it's due to summer lightning strikes or careless campers. All of these things take a toll on our roadway infrastructure, including bridges and culverts, and we need to take steps to ensure the public will be safe through the challenging times ahead.

The study will cover the eastern unincorporated communities (east of Highways 99 and 41 to the County line) and overlapping incorporated communities to plan for the resilience of transportation infrastructure due to flooding, drought, wildfire, tree mortality, and other climate-related causes. When storm events occur, the roads can flood and impact thousands of residents trying to get to school, work, and access to other vital resources. This area of study was chosen due to its high risk for flash floods, wildfires, road failures, and high concentration of rural communities. Deliverables include a report with scoping, cost estimates, and a list of priority projects, with feasibility of recommended actions, identified through a scientific and public process that considers cost, equity, long-term resiliency, and potential environmental impact. The study is in alignment with the Fresno County Hazard Mitigation Plan, the California Transportation Plan, the California Climate Adaptation Strategy, and Climate Action Plan for Transportation Infrastructure (CAPTI).

Project Stakeholders

The unincorporated communities include, but are not limited to, Auberry, Dinkey Creek, Dunlap, Friant, Hume, Huntington Lake, Piedra, Prather, Shaver Lake, Tollhouse, and Yokuts Valley. The incorporated cities include Clovis, Selma, Parlier, Reedley, Sanger, Kingsburg, Fowler, and Orange Cove. Each community and city will be kept informed and invited to participate in engagement activities. Community-based organizations will be utilized to increase outreach to underserved groups. The Fresno Council of Governments will be engaging in a separate Countywide assessment of vulnerable transportation locations and will be kept informed about locations the County identifies as priorities. The Fresno County Public Works and Planning Department has extensive documentation on past storm and fire events and will help with providing information about previous road closures and damages. Southern California Edison and Pacific Gas & Electric Company will be contacted as they have utilities and infrastructure throughout eastern Fresno County. A consultant will be working on this project to identify locations that need to build climate resiliency, scoping the potential projects for solutions and alternatives, feasibility, cost estimates, and creating a priority list of projects that can be programmed into the Regional Transportation Plan for future funding consideration. The consultant will also be involved with public engagement activities. The County recently was awarded a \$3 million grant from the California Department of Forestry and Fire Protection (CalFire), which will aid in the removal and disposal of hazardous trees and ground fuels along roadsides and habitable structures, as well as widening a number of dedicated fire escape routes through the thinning of ground fuels and vegetation, further strengthening community protection.

Overall Project Objectives

<u>Sustainability</u>

The project will identify transportation infrastructure that requires resilient construction that provide sustainable, reliable mobility for people, goods, and services.

Preservation

Nature-based solutions will be explored as options to preserve or enhance the existing environment and transportation system and reduce GHG emissions.

Accessibility

Improve the accessibility of transportation routes for underserved and rural communities trying to reach critical services.

<u>Safety</u>

Decrease the risk of serious injury or fatalities while using the transportation system, especially during and after serious weather events.

Innovation

Explore innovative designs through the use of nature-based solutions to reduce flood and risk, and innovative technologies to build resilience against wildfires.

Economy

Support the local, regional, and national agricultural economy by keeping access open to essential routes.

<u>Health</u>

Keep access to health services available through reliable transportation routes and support infrastructure that reduces GHG emissions.

Summary of Project Tasks

Task 01: Project Administration

This is an Administrative Task that shall only be charged against by the Grantee for the Administration of this grant project. Costs for this task cannot exceed 5% of the grant award amount.

Grantee will manage and administer the grant project according to the Grant Application Guidelines, Regional Planning Handbook, and the executed grant contract between Caltrans and the grantee.

Task Deliverables	

- Kick-off meeting with Caltrans Meeting Notes
- Quarterly invoices and progress reports

Task 02: Consultant Procurement

Grantee will procure a consultant, consistent with state and federal requirements, Local Assistance Procedures Manual for procuring non-Architectural and Engineering consultants, the Grant Application Guide, Regional Planning Handbook, and the executed grant contract between Caltrans and the grantee.

Task Deliverables

- Provide current procurement procedures
- Provide copy of the Request for Proposal/Qualifications
- Provide copy of the contract between consultant and grantee and copies of all amendments to the consultant contract
- Meeting notes from project kick-off with consultant

Task 1: Existing Conditions

The consultant will inventory existing roads and past flood and fire-impacted areas.

Task Deliverables

• Inventory/Baseline infrastructure report.

Task 2: Analysis

The consultant will analyze climate change data and make recommendations on potential resiliency improvements, cost estimates, and develop an initial priority list.

Task Deliverables

• Data collection and Analysis report, including compiled GHG emissions inventory and identified data gaps. Report on target emissions reductions, including proposed targets and rationale. Analysis report shall include recommended actions, reduction strategies, supporting data and rationale.

The consultant will be tasked with developing strategy for public outreach, through use of social media, traditional media, and community-based organizations; Producing surveys, flyers, and advertisements; providing outreach and a minimum of five (5) meetings in multiple languages as needed (combination of in-person and virtual) and present draft plan, priority list, and conceptual drawings to the public and required personnel.

Task Deliverables

 Copies of sign-in sheets/proof of attendance of all public outreach meetings and events, including summary report of outreach and feedback received. Brochures, promotional videos, or websites developed for advertising the Plan.

Task 4: Advisory Committee Meetings

The consultant will be tasked with attending and presenting to advisory groups as needed or requested.

Task Deliverables

• Summary report of feedback received and copies of meeting sign-in sheets/proof of attendance.

Task 5: Draft and Final Plan

The consultant will prepare a Draft plan based on their analysis and feedback from County staff and Cities. The consultant will prepare a final plan based on feedback received from public outreach, the Board of Supervisors, County staff, and Cities.

Task Deliverables

- Draft Plan for County and Cities Review list of comments
- Draft Plan for Public Review list of comments
- Draft Plan for Board of Supervisors Review list of comments
- Final Plan that includes a summary of next steps towards implementation, a starting list of projects and their ranked prioritization based on most efficient use of funds, credits FHWA, FTA, and/or Caltrans on the cover or title page, submitted to Caltrans in an ADA accessible electronic copy

Task 6: Board Review/Approval

The consultant will be tasked with attending and presenting the Draft Plan and Final Plan to the Board of Supervisors, and potentially other oversight groups.

Task Deliverables

- Present Draft and later, Final Plan at the Board of Supervisors meetings
- Preparation of Visual Media Presentation of Draft and Final Plans through slideshow or video
- Assisting with preparation of advance agenda material
- Give presentation and answer questions from the Board, and defend recommendations
- Give presentations at up to 2 additional meetings if needed

California Department of Transportation Sustainable Transportation Planning Grant Program COST AND SCHEDULE

Grant	Category	Climate Adaptation																						
Grant	Fiscal Year	FY 2025-26																						
Projec	ct Title	Eastern Fresno County Climate Adapt	ern Fresno County Climate Adaptation Plan																					
Orgar (Legal r	nization name)	County of Fresno, Public Works and Pl	unty of Fresno, Public Works and Planning																					
Discla	nimers	gency commits to the Cost and Schedule below. Any changes will need to be approved by Caltrans prior to initiating any Cost and Schedule change or amendment. se only whole dollars in the financial information fields. No rounding up or down and no cents. se the Local Match Calculator to ensure that grant and local match amounts are correct: Local Match Calculator (posted on-line)																						
Reimt Invoic	eimbursements/ Does your agency plan to request reimburesement for indirect costs? □ Yes ☑ No If yes, what is the estimated indirect cost rate? ivoicing Does your agency plan to use the Tapered Match approach for invoicing purposes? □ Yes ☑ No																							
Task #	Task Title	1	Grant Amount*	Estimated Local Cash Match*	Estimated Local In-Kind Match*	Estimated Total Project Cost*	J A	s c	FY 2	025/2	26 M A	MJ	a s o	FY 2	026/	27 F M	A M	L L	A S	FY O N	2027 DJ	7/28 F N	ИАМ	L N
01	Project Administrati (no more than 5% of tot	ON al grant funds)	\$70,000	\$9,069	\$0	\$79,069							İİ								Π		Π	
02	Consultant Procure	ment	\$50,000	\$6,478	\$0	\$56,478			-					П		П		Π			Π		Π	Π
03	Existing Conditions		\$150,000	\$19,434	\$0	\$169,434								П		П		Π		Π	Π		Π	Γ
04	Analysis		\$900,000	\$116,605	\$0	\$1,016,605												Π						Γ
05	Public Outreach		\$50,000	\$6,478	\$0	\$56,478												Π			Π		Π	Γ
06	Advisory Committe	e Meetings	\$20,000	\$2,591	\$0	\$22,591												Π			Π			
07	Draft and Final Plar	1	\$250,000	\$32,390	\$0	\$282,390															Π			
08	Board Review/App	roval	\$10,000	\$1,296	\$0	\$11,296																		
		Totals	\$1,500,000	\$194,341	\$0	\$1,694,341																		

EPA EJScreen for Eastern Fresno County – Particlulate Matter 2.5

Red portions are in the 95-100 percentile, Orange portions are 90-95 percentile, and Yellow is 80-90 percentile. Notice that the majority of Fresno County is in the 95-100 percentile.

https://ejscreen.epa.gov/mapper/ Accessed on January 13, 2025

EPA EJScreen for Eastern Fresno County - Ozone

Red portions are in the 95-100 percentile, Orange portions are 90-95 percentile, and Yellow is 80-90 percentile. Most of the Sierra Nevada is above the 50-80 percentile, espectially the foothill and Valley areas which are in the 95-100 percentile.

https://ejscreen.epa.gov/mapper/

EPA EJScreen for Eastern Fresno County – Flood Risk

Red portions are in the 95-100 percentile, Orange portions are 90-95 percentile, and Yellow is 80-90 percentile. Most of the Sierra Nevada is above the 50-80 percentile, although a portion of the Valley floor is at significant flood risk.

EPA EJScreen for Eastern Fresno County – 100-year Floodplain

The areas in blue are considered to be in the 100-year floodplain. Many of the larger blue areas in Eastern Fresno County are dammed reservoirs, constructed for hydroelectric power, flood control, and irrigation.

EPA EJScreen for Eastern Fresno County – Wildfire Risk

Red portions are in the 95-100 percentile, Orange portions are 90-95 percentile, and Yellow is 80-90 percentile. Most of the Sierra Nevada is above the 80-90 percentile, especially the foothills which are in the 90-95 percentile.

EPA EJScreen for Eastern Fresno County – Extreme Heat

Red portions are 100-207 days per year above 90°F and dark orange portions are 90-100 days per year above 90°F. The summers in Fresno County frequently stay over 100°F for weeks on end with no rain.

https://ejscreen.epa.gov/mapper/ Accessed on January 13, 2025

EPA EJScreen for Eastern Fresno County – Transportation Access Burden

Red portions are in the 95-100 percentile, Orange portions are 90-95 percentile, and Yellow is 80-90 percentile. Most of Fresno County falls in the 50-60 percentile. The concern is the condition of transportation infrastructurfe in the event of natural hazards.

https://ejscreen.epa.gov/mapper/ Accessed on January 13, 2025

HEALTHY PLACES INDEX (3.0) FRESNO COUNTY SCORE: 12.5 PERCENTILE

https://map.healthyplacesindex.org Accessed on January 4, 2025

HEALTHY PLACES INDEX (3.0) FRESNO COUNTY SCORE: 12.5 PERCENTILE

Policy Action Areas

Econ	omic	
This County has healt other California Coun	thier economic co tties.	onditions than 26.8% of
Indicator	Value	Percentile Ranking
About Pourore	54 0%	71 .

Above Poverty	54.9%	7.1	-		0
Employed	68.2%	50.0	-	-	0
Per Capita Income	\$24,400	20.7			0

Education	/

This County has healthier education conditions than **33.9%** of other California Counties.

Indicator	Value	P	ercentil	e Rank	oing
Bachelor's Education or Higher	21.2%	43.1	-+	-	Ð
High School Enrollment	97.5%	41.5	-	-	0
Preschool Enrollment	40.6%	30.4	-	-	0

This County has healthier social conditions than **28.6%** of other California Counties.

Indicator	Value	Percentile Ranking
2020 Census Response Rate	68.6%	55.4 🔳 📔 0
Voting	72.6%	8.9 🗰 🔳 🛛

This County has healthier neighborhood conditions than **14.3%** of other California Counties.

4.3% of other Calif	ornia Counties.	
Indicator	Value	Percentile Ranking

~

Park Access	60.1%	32.1		0
Retail Density	3.33 Jobs	66.1	_	0
Retail DerBity	per acre			Ĩ
Tree Canopy	5.12%	19.6	-	0

This County has healthier healthcare access conditions than **21.4%** of other California Counties.

Indicator	Value	Percentile Ranking
Insured Adults	87.4%	25.9 🛋 🗖 🔿

ther California Counties	5.		ar re of
Indicator	Value	Percentile	Rankin
Homeownership	53.3%	13.8	- 0
Housing Habitability	98.9%	55.4 🔲 📔	- •
Low-Income Homeowner	r		
Severe Housing Cost Burden	8.90%	85.7	• •
Low-Income Renter			
Severe Housing Cost	28.4%	10.7	- 6

Clean Environment

~

This County has healthier clean environment conditions than **3.6%** of other California Counties.

Indicator	Value	P	ile Ranking				
Diesel PM	0.179 kg/day	17.9		-	0		
Drinking Water Contaminants	713	1.8	-	-	0		
Ozone	0.0604 ppm	7.1	•	-	0		
PM 2.5	13.2 µg/m²	5.4	-	-	0		

HEALTHY PLACES INDEX (3.0) FRESNO COUNTY SCORE: 12.5 PERCENTILE

Racial Justice and Health Equity		Equity
Race/Ethnicity	~	Indicator
		Historicall (Tract)
Click to expand groups and show tribal affiliat ancestry detail.	ion ar	Race/Ethnicity Diversity Index
Mamarican Indian or Alaska Native alone	0.5% -	
Asian alone	10.2%	
Black or African American alone	4.5%	Race/Ethnicity Diversity of Electeds (County)
Hispanic or Latino of any race	53.0%	
Native Hawaiian or other Pacific Islander alone	0,1% -	
Some other race alone	0.2%	
Two or more races	2.1%	
White alone	29.4%	

Percentile Ranking

Ð

Ð

0

一历四

66.1

24.1

Value

11KA
sk Assessment

ATTACHMENT D

Figure 9. Fresno County Drought Related Tree Mortality High Hazard Zones

Source: CA Geoportal; CalFire – Fire Resources & Assessment Program (FRAP), 10/2022; County of Fresno -GIS

Figure 31. Fresno County Wildfire Priority Landscape - Post Wildfire Erosion Threat

Source: CA Geoportal; CA-DFW; CalTrans; County of Fresno – GIS, CalFIRE – FRAP, California's Forests and Rangelands: 2010 Assessment

https://www.washingtonpost.com/weather/2020/09/06/california-wildfires-heat-wave/ Accessed 1-20-2025

(9) This article was published more than 4 years ago

Democracy Dies in Darkness

Capital Weather Gang

California endures record-setting 'kiln-like' heat as fires rage, causing injuries

Creek Fire explodes in size, trapping and injuring campers

September 6, 2020

California just witnessed one of its hottest weekends in memory, which intensified destructive wildfires that erupted.

The scorching temperatures forced the National Weather Service to issue heat alerts for nearly the entire state. Many areas were also under red-flag warnings for high fire danger as the heat worsened blazes already burning and helped fuel new ones.

Numerous locations in California experienced their hottest September day on record Sunday. A few spots saw their highest temperatures ever observed in any month.

Woodland Hills, just 20 miles from downtown Los Angeles, soared to 121 degrees, the highest temperature ever observed in Los Angeles County. Chino, 32 miles east of Los Angeles, also hit 121 degrees. Both the Chino and Woodland Hills marks were the highest ever recorded west of the mountains in Southern California.

Farther north, the mercury in San Luis Obispo, just 10 miles from the Pacific Ocean, reached a sweltering <u>120 degrees</u>. This may be the highest temperature ever measured so close to the ocean in the Americas. Even downtown San Francisco touched 100 degrees, breaking a record that stood for more than a century.

The blistering heat helped fuel a serious wildfire situation Saturday when the Creek Fire in the Sierra National Forest erupted, about 290 miles north of Los Angeles. The blaze was first detected Friday night and rapidly grew to at least 45,500 acres by Sunday afternoon.

That fire trapped about 1,000 people near Mammoth Pool reservoir as flames crossed the San Joaquin River, including about 150 people who became stranded at a boat launch, the Associated Press reported.

A backpacking trip cut short by unforeseen thunder, ash rain, and having to drive through literal fire to evacuate <u>#SierraNationalForest</u> in time. Grateful to the SNF ranger who led us down... wish we we got her name. #CreekFire @mercnews @sfchronicle @ABC7 @KTVU pictwitter.com/37Ys7XGJ2a

- Juliana Park (@julipdoe) Segtember 6, 2020

According to the AP, 200 people were rescued from the Mammoth Pool Campground by military helicopters. Two of them were severely injured, 10 had "moderate injuries" and others had minor or no injuries. According to the California Air National Guard, this was the largest wildfire-related air evacuation in recent memory.

The Fresno Bee reported that at one point, people trapped by the flames were told to jump in the water as a last resort should the flames get too close. However, Sierra National Forest officials said the fire burned around the reservoir and the evacuations took place because the blaze blocked evacuation routes.

The Fresno County Sheriff's Office ordered new evacuations Sunday morning as the fire continued to grow.

The Creek Fire sent smoke, embers and fine particles 45,000 feet in the air Saturday and Sunday, forming a pyrocumulonimbus cloud. Such clouds, which look like explosions from a distance, are fire-driven weather systems. The one seen Saturday was causing lightning to strike areas downwind along with erratic and gusty surface winds. Ash fell more than 10 miles away from the fire.

Fires this weekend are what are known as plume-dominated blazes, which occur when the environment is favorable for the upward billowing of smoke and vertical transfer of heat.

smoke from the Creek Fire billows beyond a ridge as seen Sept. 5 from Huntington Lake, Calif. (Eric Paul Zamora/Fresno Bee/AP)

Thalia Dockery @SweetBrown_Shug · Follow

Replying to @wxbrad I took this today from our Southwest flight from San Jose to Las Vegas

Plume-dominated fires can frequently become firestorms, taking on the structure of a thunderstorm because of their incredible vertical release of heat. Extreme fire behavior, as has been seen with the Creek Fire, is often a characteristic of plume-dominated fires.

The Creek Fire appeared to produce multiple fire tornadoes based on Doppler radar data, which revealed vortices inside the fire and smoke plume that matched the size and shape of tornadoes.

Dr. Daniel Swain

Serious situation developing in foothills of Fresno County near #Oakhurst. #CreekFire has exploded in size & intensity at a time when 1000s of visitors have crowded area. Massive pyrocumulus cloud indicative of extreme fire behavior, & #pyrotornado may have occurred.#CAwx #CAfire

		Watch on X
GIF		
4:59 PM · Sep 5, 2020		0
🥊 1.1K 🌻 Reply	Copy link	
	Read 45 replies	

A change of wind speed and direction with height known as wind shear caused the smoke plume to rotate. In an unusual turn of events, the smoke plume's updraft also appeared to repeatedly split, with pairs of spinning rotations repeatedly forming and drifting away from one another.

The Loyalton Fire in Lassen County, Calif., produced five or more fire tornadoes barely three weeks ago, prompting the National Weather Service to issue a first-of-its-kind fire tornado warning.

In addition to the Creek Fire, firefighters are still battling the second-, third- and fourth-largest fires in state history that erupted during a mid-August heat wave and unusual thunderstorms north of San Francisco. Although those fires are better contained, the heat, dry weather and shifting, strong offshore winds are causing an uptick in their activity.

Since Aug. 15, the state has seen more than 1.6 million acres burned and 900 new fires started, along with eight deaths and nearly 3,300 destroyed structures. In an average California fire season to date, about 310,000 acres are burned, according to Cal Fire, the state firefighting agency.

Daniel Swain, a climate researcher at the University of California at Los Angeles, said the state may set a record for the "most acres burned in the modern era" as soon as Monday.

Firefighting operations will continue to be extremely challenging because of the triple-digit heat and extremely low humidity levels, according to the Weather Service.

Forecasters are monitoring two periods for strong, desiccating offshore winds to pick up in strength early this week. The first looks as though it could take place Sunday night through Monday evening, with the next taking shape as a rare early-season Santa Ana wind event in Southern California on Tuesday into Wednesday.

The Weather Service's forecast office in Los Angeles is predicting "elevated to critical fire danger"

@weatherdak · Follow	
Hi-res imagery of the Creek Fire	s explosive growth today.
Pyrocumulonimbus mania. Wow	
	Watch on X
GIF	
10:43 PM · Sep 5, 2020	(
🎔 1.7K 🌎 Reply 🕜 Copy link	

Punishing heat

The Weather Service office in Los Angeles described Sunday's heat as "kiln-like," predicting a "dangerous to potentially deadly" extreme heat event.

Ninety-nine percent of the state's population was under an excessive-heat warning or heat advisory, according to the Weather Service office in Sacramento.

In a sign of the heat to come, temperatures did not drop below the 90s on Saturday night and into early Sunday in some locations from the San Fernando Valley to parts of L.A. County. Two temperature stations in the L.A. area were still hovering above the century mark at 3:02 a.m. local time, the Weather Service said.

High temperatures in Southern California on Sunday ranged from 105 to 115 degrees near the coast to up to 120 degrees in inland areas, which would edge past all-time-high temperature records in some locations.

Some noteworthy temperature records that have already fallen include:

[•] Burbank, Calif., tied its all-time-high temperature record of 114 degrees on both Saturday and Sunday.

- Palm Springs hit 122 degrees Saturday, breaking its previous September record from 195 ATTACHMENT F
- Death Valley, Calif., set a September record with a high of 125 degrees, beating the old record of 123, set in 1996. This comes just two weeks after reaching 130 degrees, an August record, and the highest temperature observed elobally since at least 1931.
- The <u>121-degree temperature recorded in Woodland Hills</u> Calif., on Sunday was both the highest temperature on record there and the highest temperature seen anywhere in Los Angeles, Ventura, Santa Barbara and San Luis Obispo counties, the Weather Service said.

The massive heat dome sprawled over western North America established September records from Mexico to the Colorado Rockies. Mexicali, Mexico, soared to 121.1 degrees Saturday, the country's hottest temperature ever observed during the month. Denver hit 101 degrees Saturday, its highest September temperature and the latest on record it has crossed the century mark. Nearby Boulder hit 99 degrees both Saturday and Sunday, its hottest temperature so late in the year. On Tuesday, Denver and Boulder are expecting snow.

La Junta, Colo., about 60 miles southeast of Pueblo, registered a high of 108 degrees, a state record for the month of September.

Temperatures are forecast to cool some by Tuesday but to remain above normal in most of California for much of the week.

Studies show human-caused climate change is tilting the odds in favor of more frequent, severe and longer-lasting heat waves, as well as larger wildfires throughout large parts of the West. Research published last month, for example, shows climate change is tied to more frequent occurrences of extreme-fire-risk days in parts of California during the fall. (Meteorologists define the fall as beginning Sept. 1.)

Michael Wehner, who researches extreme weather events at Lawrence Berkeley National Laboratory, estimates "climate change has caused extreme heat waves to be 3 to 4 degrees Fahrenheit warmer in California." These trends "will continue as the planet continues to warm," he said in an email, noting the amount of warming will depend on future greenhouse gas emissions.

The heat wave has prompted warnings from the operator of California's electricity grid that rolling blackouts may need to be instituted during times of peak power use, and it has asked residents to take steps to reduce electricity use during times of peak demand. A "Stage 2 warning" was issued Saturday and Sunday, indicating all efforts at outage mitigation had been taken, but it was not followed by outages.

The California ISO declared a "Flex Alert" on Sunday, calling for reduced electricity use between 3 p.m. and 9 p.m. local time.

The state utility PG&E has also warned it may institute rolling outages if winds get too strong early this week, because its power infrastructure has been blamed for sparking some of the state's largest and deadliest blazes in recent years.

Extreme heat has been the top weather-related killer in the United States during the past 30 years, and combined with poor air quality from nearby fires as well as the coronavirus pandemic, the health threat is particularly acute. Air conditioning provides the best protection from excessive heat, but because of the possibility of exposure to the virus at cooling shelters, the pandemic may keep people who lack air conditioning at home.

Jason Samenow, Scott Wilson and Matthew Cappucci contributed to this report.

Huntington Lake is seen in the foreground as the Creek Fire burns in the distance Sept. 5, about 35 miles northeast of Fresno. (Eric Paul Zamora/Fresno Bee/AP)

Berkeley Forests

Previous tree mortality and density big factors in the devastating 2020 Creek Fire

May 18, 2022

Wildfires burning in western US Forests have increased in size and severity since the late 20th century, with a number of recent fires exhibiting characteristics that match the criteria for mass fires – or fires that burn with high intensity over large continuous areas for long durations of time. Operational fire behavior models, commonly used by federal and state fire suppression agencies to predict how wildfires will behave, cannot predict mass fire behavior, largely because they do not include the important combustion and fire-atmosphere interactions. The Creek Fire, which exhibited mass fire behavior when it burned through the southern Sierra Nevada in 2020, was analyzed to better understand the mechanisms and forest conditions that contribute to devastating wildfires.

Scott Stephens, Alexis Bernal, and Brandon Collins from the University of California, Berkeley, along with other colleagues used both ground based and remotely sensed data to analyze behavior patterns of the 2020 Creek Fire to determine which variables were important in predicting fire severity. Findings indicated that dead biomass and live tree density were the two most important variables – more so than treatment history (i.e. timber harvesting, fire hazard reduction treatments, etc.), fire history or topography. Areas with the highest amounts of dead biomass and live tree densities were also positively related to high severity fire patch size - indicating that large homogenous swaths of these types of conditions resulted in adverse, landscape-scale fire effects.

"Forest restoration must be increased greatly in California forests, the Creek Fire shows us what will happen if we don't move decisively " said Dr. Stephens, lead author on the work, which is published in a new paper (https://authors.elsevier.com/sd/article/So378-1127(22)00252-3). in the journal Forest Ecology and Management.

Additional analysis revealed that although the first two days of the Creek Fire were abnormally hot and dry, weather during the days of the greatest fire growth was largely within the normal range for the time of year (late summer). The spatial distribution of fire intensity during those days, however, revealed some notable patterns, with the concentration of heat from the fire being in the opposite location of where it would be expected. Specifically, on the day of the largest growth (September 6th), not only was the greatest heat concentrated away from the fire perimeter (or "flaming front", which is the expected location for heat concentration), but a significant amount of heat was still being generated within the previous day's fire perimeter. This finding is critical to better understanding how traditional fire behavior models may or may not accurately predict fire behavior in forests that have large, contiguous areas of dead trees and high live tree density – an increasingly common forest fuel condition in our Sierra Nevada forests.

The findings of this study have important implications for managers, as they indicate that in certain forest structures (i.e. those with large, homogenous swaths of dead biomass or high densities of live trees) conventional fire models may dramatically under-predict the spread rate and area burned because these models do not correctly capture the physics driving the fire.

The Creek Fire is one of a number of fires that shows us how vulnerable of our current frequent-fire forest conditions are to suffering high tree mortality and offering fuel conditions capable of generating mass fires from which future forest recovery is questionable because of type conversion and probable reoccurring high severity fire.

The study, titled "Mass Fire Behavior Created by Extensive Tree Mortality and High Density Not Predicted by Operational Fire Behavior Models in the Southern Sierra. Nevada, (https://authors.elsevier.com/sd/article/So378-1127(22)00252-3)," was published online on May 16th in the journal Forest Ecology and Management. The authors of the paper are:

- Scott Stephens, Department of Environmental Science, Policy and Management, University of California, Berkeley.
- Alexis Bernal, Department of Environmental Science, Policy and Management, University of California, Berkeley.
- Brandon Collins, Department of Environmental Science, Policy and Management and Center for Fire Research and Outreach, University of California, Berkeley.
- Mark Finney, USDA Forest Service, Rocky Mountain Research Station.
- Chris Lautenberger, Reax Engineering.
- David Saah, Spatial Informatics Group and Geospatial Analysis Lab, University of San Francisco.

UC Berkeley UC Berkeley Previously Published Works

Title

Mass fire behavior created by extensive tree mortality and high tree density not predicted by operational fire behavior models in the southern Sierra Nevada

Permalink

https://escholarship.org/uc/item/5743x1f3

Authors

Stephens, Scott L Bernal, Alexis A Collins, Brandon M <u>et al.</u>

Publication Date

2022-08-01

DOI

10.1016/j.foreco.2022.120258

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at <u>https://creativecommons.org/licenses/by/4.0/</u>

Peer reviewed

Forest Ecology and Management 518 (2022) 120258

Contents lists available at ScienceDirect

Forest Ecology and Management

journal homepage: www.elsevier.com/locate/foreco

Mass fire behavior created by extensive tree mortality and high tree density not predicted by operational fire behavior models in the southern Sierra Nevada

Scott L. Stephens^{a,1,*}, Alexis A. Bernal^{a,1}, Brandon M. Collins^{a,b}, Mark A. Finney^c, Chris Lautenberger^d, David Saah^{e,f}

^a Department of Environmental Science, Policy and Management, 130 Mulford Hall, University of California, Berkeley, CA 94720, USA

^b Center for Fire Research and Outreach, University of California, Berkeley, CA 94720, USA

^c USDA Forest Service, Rocky Mountain Research Station, Missoula, Montana 59808, USA

^d Reax Engineering, 1921 University Ave, Berkeley, CA 94704, USA

^e Spatial Informatics Group, LLC, Pleasanton, CA 94566, USA

ARTICLE INFO

Keywords: Creek fire Restoration Mixed conifer forest Wildfire Drought Bark beetles

ABSTRACT

Large, severe wildfires continue to burn in frequent-fire adapted forests but the mechanisms that contribute to them and their predictability are important questions. Using a combination of ground based and remotely sensed data we analyzed the behavior and patterns of the 2020 Creek Fire where drought and bark beetles had previously created substantial levels of tree mortality in the southern Sierra Nevada. We found that dead biomass and live tree densities were the most important variables predicting fire severity; high severity fire encompassed 41% of the area and the largest high severity patch (19,592 ha) comprised 13% of total area burned. Areas with the highest amounts of dead biomass and live tree densities were also positively related to high severity fire patch size indicating that larger, more homogenous conditions of this forest characteristic resulted in adverse, landscape-scale fire effects. The first two days of the Creek Fire were abnormally hot and dry but weather during the days of the greatest fire growth was largely within the normal range of variation for that time of year with one day with lower windspeeds. From September 5 to 8th the fire burned almost 50% of its entire area and fire intensity patterns inferred from remotely sensed brightness-temperature data were typical except on September 6th when heat increased towards the interior of the fire. Not only was the greatest heat concentrated away from the fire perimeter, but a significant amount of heat was still being generated within the fire perimeter from the previous day. This is a classic pattern for a mass fire and the high amount of dead biomass created from the drought and bark beetles along with high live tree densities were critical factors in developing mass fire behavior. Operational fire behavior models were not able to predict this behavior largely because they do not include postfrontal combustion and fire-atmosphere interactions. An important question regarding this mass fire is if the tree mortality event that preceded it could have been avoided or reduced or was it within the natural range of variation for these forests? We found that the mortality episode was outside of historical analogs and was exacerbated by past management decisions. The Creek Fire shows us how vulnerable of our current frequent-fire forest conditions are to suffering high tree mortality and offering fuel conditions capable of generating mass fires from which future forest recovery is questionable because of type conversion and probable reoccurring high severity fire.

* Corresponding author.

¹ These authors contributed equally to this work.

https://doi.org/10.1016/j.foreco.2022.120258

Received 4 March 2022; Received in revised form 21 April 2022; Accepted 26 April 2022 Available online 16 May 2022

0378-1127/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

^f Geospatial Analysis Lab, University of San Francisco, San Francisco, CA 94117, USA

E-mail address: sstephens@berkeley.edu (S.L. Stephens).

S.L. Stephens et al. 1. Introduction

Fire is an integral component of most western US forests but more than a century of logging and attempted fire exclusion has dramatically changed frequent-fire forests (forests that used to burn every 35 years or less) by increasing tree densities, lowering average tree size, increasing the dominance of shade tolerant species, and increasing fuel loads (Safford and Stevens, 2017; Hagmann et al., 2021; Bernal et al., 2022). Wildfires burning in these forest conditions have increased in size and severity since the late 20th century (Miller et al., 2009; Stevens et al., 2017) with climate change also being a factor (Abatzoglou and Williams, 2016; Westerling, 2016). In addition to altered forests and climate change, recent drought/bark beetle induced tree mortality can also be a factor contributing to exacerbated wildfire behavior and effects (Stephens et al., 2018). An important consideration with large-scale tree mortality is the potential to add long-burning, high fuel loads over extensive areas-fuel characteristics that match the criteria for mass fires. Mass fires (Finney and McAllister, 2011) can occur when large, continuous areas (several km²) are burning with high intensity for long durations (hours) as seen from multiple earthquake-related ignitions in urban areas and by incendiary bombing in war (Pitts, 1991). Mass fire behaviors result from the strong coupling between the fire and induced atmospheric circulations.

Wildland fire behavior concerns the spread and energy release of free-burning vegetation but is complicated to predict. Modeling of fire behavior is traditionally focused on the characteristics of the flaming edge – its spread rate and fireline intensity as a direct function of fuel, weather, and topographic factors. All US operational fire behavior prediction models are empirical, i.e., based on fitting of experimental data, and suffer from two principal limitations. First, feedbacks between the fire and its environment are not explicitly included, and second, heat release from combustion is restricted to only the short-lived flaming phase of fine fuel materials. Both of these limiting factors are interconnected because heat release over extensive areas (not thin flame zones) from all phases of combustion (flaming and non-flaming) can become coupled with atmospheric circulations that in-turn affect broadscale fire behaviors for long periods.

In most natural fuel configurations, fine fuel materials (<7.5 cm thick) have a short flaming time, typically varying from a few seconds for grass to perhaps a minute or two for small woody fuel particles (Nelson, 2003). Once flaming has ceased, burning of residual char (often called solid phase combustion) is not modeled but may constitute 30% of the pre-burn fuel mass (Di Blasi et al., 2001), and even a greater fraction of potential residual heat because of its high carbon content (Babrauskas, 2006). Furthermore, combustion characteristics of large woody fuel (logs) and deep organic layers (duff) are completely neglected by current operational models but burn in widely varying fashion - ranging from little consumption, to long-duration smoldering with slow heat release rates, to flaming at high heat release rates. Environmental conditions at the time of burning, including those induced by the fire itself, have a strong influence on the type of combustion and heat release rates in these fuels. One of the most salient fire-induced influences is local winds that effectively ventilate combustion of the long-burning materials. Thus, disparity between predicted and observed fire growth would be expected in fuel types with large or deep fuel materials that support deep combustion zones and long duration burning, occurring well beyond the passage of the flaming edge.

Fuel conditions across vast areas of western US frequent-fire forests are now characterized by high concentrations of large woody material and deep organic layers on the forest floor because the historical regime of frequent fire has been disrupted by fire suppression and exclusion (Hagmann et al., 2021). Burning of these fuel complexes under wildfire conditions may exhibit many of the fire behaviors that are outside the range of modeling capabilities. Key indicators of such fires would be the deep zones of combustion covering large areas for long durations. Such fires could develop pyrocumulonimbus clouds towering to altitudes of 10,000 m (Peterson et al., 2017) (Fig. 1), associated precipitation and downdrafts, and likely vorticity near the ground that further affects burning behaviors of the fuel complex in ways beyond the assumptions and capabilities of operational fire behavior models (Finney et al., 2021).

The overall goal of this project is to investigate extreme fire behavior and effects for a wildfire that occurred in an area affected by high tree mortality prior to the wildfire. We hypothesized that this pre-fire mortality influenced the burning characteristics of the fire itself, as indicated by Goodwin et al. (2021), which may not be captured by current operational fire spread models. We integrated disparate spatial datasets in a novel analytical approach to address the following objectives: (1) quantify the extent and magnitude of tree mortality that preceded the 2020 Creek Fire, (2) use a network of weather data collected before and during this fire to evaluate fire growth with local weather, and (3) predict the fire behavior and severity of the Creek Fire and compared it to its actual behavior. The overall goal of addressing these objectives is to understand drivers of extreme fire behavior in a relatively unique, but likely increasing, forest fuel condition and to assess the potential for current operational fire spread models to capture this behavior (see Fig. 2).

Fig. 1. Locations (triangles) and names of RAWS stations used to create baseline and Creek Fire weather conditions (top panel). Shaded teal area delineates the Creek Fire footprint and is superimposed on aerial photos provided by United States Department of Agriculture National Agriculture Imagery Program (2020). Bottom panel is a photograph of the plume created by the Creek Fire taken by Thalia Dockery.

Fig. 2. Map of surface fuel models within the Creek Fire footprint (outlined in black).

2. Materials and methods

2.1. Study site

The Creek Fire burned in the southern Sierra Nevada mostly in the US Forest Service Sierra National Forest (Lat 37° 12′ 4″ Long 119° 16′ 18″). The fire burned 154,000 ha, which began in the early evening on September 4, 2020, in the Big Creek drainage between Shaver Lake and Huntington Lakes, California. The fire burned mostly in mixed conifer forests composed of ponderosa pine (*Pinus ponderosa*), sugar pine (*Pinus lambertiana*), white fir (*Abies concolor*), incense-cedar (*Calocedrus decurrens*), and California black oak (*Quercus kelloggii*). Prior to 1900, low- to moderate-severity fire ignited by lighting and Indigenous communities was common across this area, with mean fire return intervals ranging from 5 to 20 years (Kilgore and Taylor, 1979; Caprio and Swetnam, 1993; Krasnow et al., 2017; Long et al., 2017,2021). This area

of the southern Sierra Nevada has varied land-use practices including past wildfires, harvesting operations, recreation, and a limited amount of prescribed fire and other fuel treatments. The Creek Fire is one of the largest forest wildfires in modern California history.

2.2. Fire weather

We collected data from 7 Remote Automated Weather Stations in and around the Creek Fire footprint (Fig. 1) using the Program for Climate, Ecosystem, and Fire Applications and Fire and Aviation Application Information portals. For each station, we collected dry bulb temperature (°C), relative humidity (%), and windspeed (km h⁻¹) from 2000 to 2020, specifically focusing on the common wildfire months of August–October. Station data were then processed within Fire Family Plus to extract hourly weather data for each day as well as hourly fire danger metrics including the energy release component (ERC) and burning index (BI). ERC reflects the available energy per unit area within the flaming front, and by keeping fuel type constant, becomes an index of changing fuel moisture content. BI is related to the flame length (Bradshaw et al., 1983) and thus a product of both ERC and the fire rate of spread which is heavily influenced by wind speed. These indices from the National Fire Danger Rating System are derived from the Rothermel fire spread equation (Rothermel, 1972) for fuel model "G" which contains four fuel size classes but applies only to fire behavior of a thin flaming front. Both metrics are positively related to fire severity (Lydersen et al., 2014, 2017). For each day, we averaged hourly weather data from 18:00 to 1:00 UTC (11:00–18:00 PST), which is when we expect weather to have the greatest influence on fire behavior.

2.3. Fire growth and intensity

To discern how fire spread and intensity varied with weather, we used the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Joint Polar Satellite System (JPSS-1), which provides a 375-m resolution active fire product from the Fire Information for Resource Management System. From this point dataset, we interpolated daily Creek Fire perimeters similar to Briones-Herrera et al. (2020). Based on their methods, we aggregated points for each day of the Creek Fire in R (R Core Team 2020) at 1125 m, with a minimum of 3 points to be considered as part of the daily fire perimeter. Daily aggregated points were then applied with a convex hull algorithm using the *sf* package (Pebesma, 2018) to delineate fire perimeters. When two or more interpolated perimeters overlapped spatially and temporally, we combined those perimeters together. We also created maps of daily fire intensity by converting the VIIRS points into a 375-m resolution raster dataset. To do this, we estimated the Normalized Difference Brightness Temperature Index (NDBTI: Eq. (1)):

$$NDBTI = \frac{T4 - T5}{T4 + T5}$$
(1)

where T4 and T5 represent the brightness temperature (Kelvin) of the VIIRS I4 and I5 bands, respectively (Waigl et al., 2017). Both bands are used in the active fire detection and characterization algorithm, with I4 used as the predominant band for active fire detection and I5 used to compliment I4 by correcting saturated pixels. Elevated NDBTI values indicate higher fire intensity, which can distinguish active fire fronts from residual fire within a fire perimeter (Waigl et al., 2017). However, cases can arise where I4 < I5, resulting in a negative NDBTI value. This anomalous condition is an artifact of pixel saturation due to the low temperature threshold of the I4 band (367 K). In these cases, pixels were assigned a value equivalent to the maximum NDBTI value for a given day to better represent those pixels displaying high fire intensity.

2.4. Fire severity

Fire severity was estimated according to corrected methods established by Parks et al. (2018), which uses the Google Earth Engine platform to derive Landsat-based fire severity indices. We created a 30 m resolution raster of an extended assessment of the relativized delta normalized burn ratio (RdNBR) using Landsat imagery from the year prior to and after the start date of the Creek Fire (September 4, 2020). We then categorized RdNBR values into four fire severity classes (unchanged, low, moderate, and high) based on thresholds for the composite burn index described by Miller and Thode (2007).

2.5. Forest structure and composition

To quantify forest structure following drought and bark beetle attacks (2012–2016) in the southern Sierra Nevada, we used live tree density (trees ha^{-1}) and live tree basal area (m² ha^{-1}) from F3. F3 is a 30-m resolution raster dataset that integrates Forest Inventory and

Analysis data and uses the Forest Vegetation Simulator (FVS) to model initial stand conditions and project succession over time (Huang et al., 2018). It then uses Field and Satellite for Ecosystem Mapping to incrorporate remotely-sensed data (Light Detection and Ranging data and Landsat imagery) to simulate spatiotemporal forest patterns across larger scales. Since tree mortality data were not available for F3, we used the change in live basal area from 2011 to 2016 to estimate the amount of snag basal area generated during the drought and bark beetle attacks. However, this approach means that mortality is only detectable if there was a decrease in basal area from 2011 to 2016. Predicted tree mortality between 2011 and 2016 is mainly driven by a stand density index-based mortality model within FVS which applies either background or densitydependent mortality rates when relative stand density index is below or above a minimum threshold, respectively (Dixon et al., 2008). F3 uses regionally-specific mortality models developed for FVS variants (Huang et al., 2018), with the western Sierra Nevada variant accounting for basal area distribution and species to estimate mortality rates for individual trees (Dixon et al., 2008). However, this approach mainly attributes mortality among smaller-sized trees without consideration for the spatially interactive processes that govern the species and size of trees that die following large-scale disturbances (Huang et al., 2019). Given that the region encompassing the Creek Fire footprint suffered the greatest mortality among large ponderosa pine that likely died from bark beetle-associated mortality (Fettig et al., 2019), our estimates of mortality and fuels generated by that mortality may be lower than what existed in this region prior to the Creek Fire.We converted snag basal area to a percent of total basal area within a given pixel. We also converted snag basal area to dead biomass (Mg ha⁻¹) using aboveground biomass allometric equations provided by Knight et al. (2020) to estimate dead fuels that were available to burn during the Creek Fire.

2.6. Previous fire history

Since previous wildfire activity can influence subsequent fire behavior and effects (Lydersen et al., 2019), we accounted for wildfire history within the Creek Fire footprint. Wildfire data from 1984 to 2017 were obtained from Miller (2017), which included all wildfires >81 ha in size. Although this window omits three years prior to the Creek Fire, there were no additional wildfires within the Creek Fire footprint from 2017 to 2020, totaling 23 wildfires prior to the Creek Fire. We converted fire perimeter polygons to a 30-m resolution raster dataset, with pixel values ranging from 0 to 3 indicating the number of times burned.

2.7. Previous treatment history and topography

Fuel reduction and forest restoration treatments can have an impact on fire behavior and effects (Stephens et al., 2009). We accounted for treatment history within the Creek Fire footprint by using the US Forest Service Activity Tracking System (FACTS), which contains a database of polygons delineating various treatments that are planned or completed. These treatments included fire hazard reduction, range improvement, reforestation, timber stand improvement, and timber harvesting. We chose to only include treatments that were completed from 2011 until the start date of the Creek Fire to evaluate how treatments implemented during the drought and bark beetle attacks may have impacted the Creek Fire. We converted polygons to a 30-m resolution raster dataset, with pixel values categorized as 0 or 1 to indicate the absence of presence of treatments, respectively.

Topographic data were acquired from LANDFIRE and included elevation (m), slope (degrees), and aspect (degrees). We converted aspect to a categorical variable with breakpoints at $0^{\circ}/360^{\circ}$, 90° , 180° , and 270° to correspond to northeast-facing, southeast-facing, southwest-facing, and northwest-facing slopes, respectively. All spatial data including forest structure and composition, previous fire history, previous treatment history, and topography were cropped and aligned with the extent of the fire severity raster we generated (~30 m resolution;

S.L. Stephens et al.

World Geodetic System 84).

2.8. Modeled fire behavior

The operational fire spread model ELMFIRE (Lautenberger, 2013, 2017) was used to model initial progression of the Creek Fire from September 4 to 8, 2020 under conventional modeling assumptions that could have realistically been applied for real-time forecasting. ELMFIRE can be thought of as a gridded ensemble implementation of 2D Rothermel-based fire models such as FARSITE (Finney, 1998) with some differences in how the fire front is tracked and crown fire and spotting are estimated. ELMFIRE is uncoupled to the atmosphere. Although the Creek Fire's specific origin area and time of ignition are not precisely known, (per Inciweb: National Wildfire Coordinating Group, 2020a) the ignition coordinates are taken as $(-119.272^\circ, 37.201^\circ)$ with an ignition time of 18:30 PDT on September 4th. Fire model inputs were specified as follows:

- Topography and surface/canopy fuels: Pyrologix' 2020 California Fuelscape data that are based on LANDFIRE 2016 Remap 2.0.0 (LF Remap). Calibration workshops with interagency fire and fuels personnel were held to develop a calibrated fuelscape that produces locally accurate fire behavior results. Since LF Remap does not included disturbances after 2016, spatial data on fuel disturbances (fire, fuel treatments, mortality, etc.) through early 2020 were then incorporated into the fuelscape to provide a fuelscape suitable for use in California during the 2020 fire season. Additional details are provided in Brough et al. (2020).Wind speed and direction, relative humidity, and temperature: Real Time Mesoscale Analysis (National Oceanic and Atmospheric Administration, 2020) which provides hourly estimates of sensible weather variables on a 2.5 km grid for the Continental US
- Dead fuel moisture: Calculated from gridded Real Time Mesoscale Analysis data using NFDRS procedures (Bradshaw et al., 1983)
- Live fuel moisture: Estimated from national fuel moisture database (United States Forest Service, 2020)

ELMFIRE was run in a 1000-member ensemble with wind speed perturbed at ± 3 mph, wind direction perturbed at $\pm 15^{\circ}$, spread rate adjustment factor varied from 0.8 to 1.2, and dead fuel moisture content perturbed by $\pm 0.01\%$. Fire perimeter snapshots were extracted from the 90th percentile ensemble member. The modeled growth of the Creek Fire was then compared to the actual fire perimeters to evaluate how well ELMFIRE predicted this event.

2.9. Data analysis

To evaluate how weather conditions during the Creek Fire compared to average weather conditions for the region, we measured the departure of weather conditions from the year the Creek Fire burned relative to previous years. To do this, we used the *boot* package in R (Canty and Ripley, 2017) to bootstrap 95% confidence intervals (1000 permutations) for each daily weather metric across all weather stations (Fig. 1) from 2000 to 2019 to establish a baseline of average weather conditions for the region. When then bootstrapped 95% confidence intervals across all weather stations for 2020 and compared if daily weather conditions during the Creek Fire overlapped with our baseline. We then compared fire weather days with the days of greatest fire spread and intensity during the Creek Fire.

To determine if prior forest conditions influenced fire severity, we used the *rpart* package in R (Therneau and Atkinson, 2019) to create a categorical regression tree that identified environmental thresholds that were associated with Creek Fire severity. We extracted values of live tree density, percent basal area of snags, fuels (i.e., dead biomass), previous fire history, previous treatment history, and topography from our raster datasets using a 180-m grid of points across the Creek Fire footprint. A

spacing of 180 m was chosen to minimize biases that arise from spatial autocorrelation associated with modeling fire severity (Kane et al., 2015). This resulted in a sample size of 47,680 points. With those extracted values as explanatory variables to predict fire severity, we used a class method for splitting variables and a complexity parameter of 0.01 (the increase in \mathbb{R}^2 value at each split that must occur for the split to be accepted).

Since environmental conditions within an individual pixel insufficiently captures the spatial context in the surrounding area, which can be quite influential for fire effects (Povak et al., 2020), we used the patchwoRk package in R (Sanchez, 2019) to evaluate whether prior forest conditions at larger scales influenced the fire severity patterns observed during the Creek Fire. To characterize landscape-scale, high severity patterns within the Creek Fire footprint, we delineated patches of high severity using the PatchMorph tool (Girvetz and Greco, 2007; Sánchez Meador, 2019). This algorithm determines the size and shape of patches by specifying minimum patch width and maximum width of gaps within a patch. Similar to studies that used this tool to delineate patches of fire severity, we used a minimum patch width and maximum gap thickness of 90 m (or three 30-m pixels) and a minimum patch size of 0.5 ha (Collins and Stephens, 2010, Stevens et al., 2021). Using our regression tree model, we created a continuous map of pre-fire forest conditions across the entirety of the Creek Fire footprint and used the thresholds identified to aggregate patches of forest conditions (now referred to as forest condition departure classes; FCD) using the Patch-Morph tool. We used the same patch constraints delineating high severity fire patches. We extracted the percent area from patches of FCD that intersected with high severity fire patches and used a log-transformed linear model to evaluate how the scale of FCD may have influenced high severity fire patch size.

3. Results

Baseline conditions from 2000 to 2019 from our weather station network (Fig. 1) averaged 19 °C, 38% relative humidity, and 6 km h⁻¹ windspeed. Similar conditions were observed in 2020, with average temperature 19 °C, 35% relative humidity, and 5 km h⁻¹ windspeed. However, the first two days of the Creek Fire were abnormally hotter and drier (Fig. 3), with temperature 5 °C higher and relative humidity 6% lower than baseline conditions (p < 0.05). Windspeed for those same days were within the normal range of variation. Despite initial hotter and drier conditions, we found that all weather metrics during the days of the greatest fire growth (September 6–September 8; Fig. 4) were largely within the normal range of variation for late summer and early autumn except for September 6th that had a lower windspeed. When evaluating metrics of fire danger, we found that the first five days of the Creek Fire, including the period of highest spread, were within the normal range of variation for both ERC and BI (p < 0.05; Fig. 5).

From September 5 to September 8, the fire burned almost 50% of the entire Creek Fire footprint. Upon closer examination of these large fire growth days, the spatial distribution of fire intensity revealed some notable patterns (Fig. 6). On September 5th, fire intensity was typical, with heat concentrated on the perimeter of the active flaming front. However, on the largest growth day (September 6), fire intensity was reversed, with heat increasing towards the interior of the fire perimeter. Not only was the greatest heat concentrated away from the fire perimeter, but a significant amount of heat was still being generated within the fire perimeter from the previous day. This pattern reversed back to what we would expect from a typical active flaming front by September 7th, with heat increasing towards the perimeter and heat from previous days subsiding.

Prior to the Creek Fire, we found that the drought and bark beetle attacks from 2012 to 2016 created substantial levels of tree mortality and dead fuels. By 2016, average percent of snag basal area was 37%, with most (63%) of the area characterized by moderate tree mortality (25–75%). Tree mortality translated to an average of 65 Mg ha⁻¹ of dead

Fig. 3. Creek Fire weather departure from baseline conditions (2000–2019). Gray shaded areas are bootstrapped 95% confidence intervals for baseline weather conditions, while error bars are confidence intervals for 2020. Initiation date of Creek Fire denoted with dashed line and gold shaded area are the days of largest fire spread (September 6–8th). Colored dots represent significant (p < 0.05) departure from baseline conditions, with red indicating more severe fire weather, blue indicating lower, and black indicating observation falls within normal range of variation. (For interpretation of the reader is references to colour in this figure legend, the reader

biomass, with the interquartile range spanning 25-92 Mg ha⁻¹. Despite increased levels of tree mortality, live tree density (trees > 2.5 cm diameter-at-breast-height) was still high in 2016, averaging 622 trees ha⁻¹.

Dead biomass and live tree densities were the most important variables in our categorical regression tree analysis predicting fire severity. Dead biomass, in particular, had the strongest influence on pixel-level fire severity (Fig. 7), with > 46 Mg ha⁻¹ resulting in high severity. In areas below this level of dead biomass, the lowest tree densities (<232 trees ha⁻¹) were associated with low severity, while the highest tree densities (>693 trees ha⁻¹) at low elevation (<2430 m) were associated with high severity. Intermediate levels of tree density (232–693 trees ha⁻¹) had mixed effects, producing moderate severity at lower elevation (<2430 m) and low severity at higher elevation (>2430 m). Our regression tree did not identify fire history or past forest treatments as factors related to fire severity. We also could not distinguish the contributing factors related to unchanged fire severity due to the small sample size of these observations.

Among fire severity classes, high severity accounted for the greatest proportion of area (41%) burned in the Creek Fire (61,305 ha; Fig. 8), followed by moderate severity (35%; 52,768 ha), low severity (21%; 30,917 ha), and unchanged (3%; 4920 ha). When aggregated as patches ≥ 0.5 ha, we found that that the Creek Fire created very large contiguous areas of high severity, with the largest high severity patch (19,592 ha) comprising 13% of total area burned (Fig. 8). This is a stark contrast compared to the other fire severity strata, where the cumulative area of the largest patches across unchanged, low, and moderate severity only made up 1% of total area burned (245, 699, and 1014 ha, respectively).

We used the thresholds identified in the regression tree analysis to

map and analyze three forest condition departure (FCD) classes: FCDhigh, FCD-mod, and FCD-low (Table 1). Prior to the Creek Fire, a majority (66%; 99,115 ha) of the landscape was composed of patches in the FCD-high class (dead biomass >46 Mg ha⁻¹ and >693 trees ha⁻¹), with the largest patch in this class being 83,645 ha in size. FCD-mod $(407-693 \text{ trees ha}^{-1} \text{ and elevation } <2430 \text{ m or } 232-407 \text{ trees ha}^{-1})$ patches accounted for 21% of the landscape, followed by FCD-low (<232 trees ha⁻¹ or 407–693 trees ha⁻¹ and elevation > 2430 m) patches which represented 9% of the landscape. The distribution of FCD classes within individual patches of high severity (Fig. 9) revealed that FCD-high overwhelmingly burned at high fire severity (91%). While FCD-low and FCD-mod were interspersed in high severity patch areas, they consisted of <31% of total high fire severity area. Our linear model also revealed some notable patterns in the influence of forest conditions on landscape-level, high severity fire effects. Only FCD-high was positively related to high severity fire patch size (p = 0.029), indicating that larger, more homogenous conditions of this forest characteristic resulted in adverse, landscape-scale fire effects.

3.1. Fire spread modeling

Modeled fire spread was compared to actual fire growth with cumulative MODIS (National Wildfire Coordinating Group, 2020b), VIIRS (National Wildfire Coordinating Group, 2020c), and IR (National Interagency Fire Center, 2020) fire detections at several discrete times between September 4th and September 8th, 2020 (Fig. 10). Using ELMFIRE, the rapid northward fire growth on September 5th and September 6th was not captured (Fig. 10b and c). The offshore wind event that impacted the region on September 7th and September 8th

Fig. 4. Creek Fire growth during the days of greatest fire spread. Colored polygons delineate daily fire growth, with percentage of growth relative to previous day indicated. Absolute size of growth (ha) for a given day indicated in parenthesis. The total amount of area burned during the four days of greatest fire spread consisted of almost 50% of the entire Creek Fire footprint. Shaded polygons in blue and outlined in gray delineate fire spread during subsequent days (9/9/2020–10/31/2020). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

drove fire to the southwest. As shown in Fig. 10d and e, this was captured to some degree in the model, with some discrepancies in timing and extent of the run.

4. Discussion

This work identified several factors that contributed to the extreme behavior of the Creek Fire. Before discussing these factors, it should be stressed that the forests within the Creek Fire were already highly altered from fire suppression/exclusion and past harvesting. An extensive 1911 inventory of mixed conifer forests to the southwest of the Creek Fire was compared to contemporary conditions and found drastic differences, particularly in tree density, canopy cover, the density of large trees, and the dominance of white fir that collectively increased fire hazards and reduced forest resilience (Stephens et al., 2015). These conditions alone have led to increased percentages of high severity fire and high severity patch size in the Sierra Nevada (Miller et al., 2009) even without the large-scale tree mortality that happened during the 2012–2016 drought. Increasing burn severity and larger high severity patches is a problem because it can lead to a reduction in frequent-fire forests from type conversion to shrublands or other vegetation types (Coop et al., 2020).

The Creek Fire destroyed at least 853 buildings and cost over \$193 million (2020 USD) to suppress (NIFC, 2020). While lightning ignited fires and Indigenous burning have been a part of this landscape for thousands of years (Caprio and Swetnam, 1993; Long et al., 2017,2021; Krasnow et al., 2017), the severity patterns within the Creek Fire are completely outside the historical range of variation of mixed conifer forests (Safford and Stevens, 2017). In similar mixed conifer forests in the Greenhorn Mountains southwest of the Creek Fire, the historic percentage of areas that experienced high severity fire was low and varied from 1% to 3% (Stephens et al., 2015). This is in stark contrast to the Creek Fire that was 41% high severity with the largest single, high severity patch (19,592 ha) comprising 13% of total area burned.

Prior to the Creek Fire, a majority (66%) of the landscape was composed of patches in the FCD-high class. Our analysis revealed that FCD-high areas overwhelmingly burned at high fire severity (91%) during the Creek Fire. Our model also revealed some notable patterns regarding the influence of forest conditions on landscape-level, high

7

Fig. 5. Creek Fire danger departure from baseline conditions (2000–2019). Gray shaded areas are bootstrapped 95% confidence intervals for baseline fire danger conditions, while error bars are confidence intervals for 2020. Initiation date of Creek Fire denoted with dashed line and gold shaded area are the days of largest fire spread (September 6–8th). Colored dots represent significant (p < 0.05) departure from baseline conditions, with red indicating higher fire danger, blue indicating lower, and black indicating observation falls within normal range of variation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Distribution of daily fire intensity using the Normalized Difference Brightness Temperature Index (NDBTI), where higher values indicate greater fire intensity. Days that experienced the largest growth relative to the previous day (>10%) are shown. Light gray area delineates the Creek Fire footprint while the dark shaded area delineates the total fire perimeter from previous days. The inset shows the location of the daily fire perimeters relative to the entirety of the Creek Fire footprint.

severity fire effects. Only FCD-high was positively related to high severity fire patch size (p = 0.029), indicating that larger, homogenous FCD-high conditions resulted in adverse, landscape-scale fire effects. Indeed, the condition of this forest prior to and after the 2012–2016 drought contributed to the behavior and effects of the Creek Fire. This assertion is also supported by the findings Goodwin et al. (2021), which demonstrated considerably greater potential energy release from wild-fire following drought-related tree mortality. If drought and bark beetle induced mortality occurs in other areas of the Sierra Nevada (i.e. the northern Sierra Nevada) or elsewhere, we expect that similar fire effects could be produced.

This research found that the largest factors that contributed to high severity fire within the Creek Fire were dead biomass and live tree densities. Dead biomass, in particular, had the strongest influence on pixel-level fire severity (Fig. 7). Although the first two days of the Creek Fire were abnormally hotter and drier, all weather metrics during the days of the greatest fire growth (September 6–September 8) were largely within normal ranges (except September 6th that had lower windspeeds, the day the fire grew the most). More evidence regarding fire weather is provided by the National Fire Danger indices: on September 6th the fire

grew 637% (40,997 ha) relative to the previous day although BI and ERC were within normal range of variation (Figs. 3 and 5). This is an important result that provides further evidence that the fire behavior during its more severe burning periods did not conform to the standard line-fire modeling assumptions but was instead a function of more complex interactions of fuel and fire-induced atmospheric conditions. This strong fuels signal in the severity the Creek Fire was also corroborated by an analysis of all large 2020 wildfires in California (Safford et al., 2022), which also identified the nearby 2020 Castle Fire as having a similar fuels-dominated signal.

High rates of energy release over large areas are the preconditions for fire behaviors called firestorms or mass fires (Carrier et al., 1981,1985) that become dynamically dependent upon strong atmospheric interactions. The strong coupling between the fire and atmosphere means that fire growth and behaviors along any portion of the burning area are themselves a function of large scale fire-induced atmospheric flows such as strong downdrafts, indrafts, and vorticity of the entire plume or leeside edges. High surface winds and vortices along the fire front loft and transport burning material far from the fire edge and further expand fire growth. Recent analysis of RADAR revealed smoke plumes above the

Fig. 7. Regression tree output explaining the influence of environmental conditions on fire severity. Colored boxes at the ends of the regression tree branches contain categories of fire severity (low, moderate, and high) and percentage of observations in each resulting group.

Fig. 8. Map of fire severity according to classes based on composite burn index (CBI) values including unchanged (CBI 0–0.1), low (-0.1-1.25), moderate (1.25–2.25), and high (2.25–3). The high severity patch with black border delineates the largest patch in our dataset (19,592 ha).

Creek Fire and two other large fires in California, contained counter rotating vortex pairs and associated high surface winds along the lee edges of the fire for up to 9 h and 20 km of fire spread (Lareau et al., 2022). Although fuel conditions were not evaluated by Lareau et al. (2022), the observed vorticity would likely have been initiated by prolonged area-wide burning which forces ambient wind flow around the fire front to create vorticity (i.e. Countryman, 1964) rather than a thin flame zone that is penetrated by surface winds. Sustaining the plume and vorticity would then be aided by long-duration heat release from heavy fuels across large areas, some of which would be remote from the outer fire edge as observed here. The high rates of energy release across the

Table 1

Description of forest condition departure classes (FCD) determined by thresholds found for fuels, tree density, and elevation using categorical regression tree analysis.

Class	Fuels (Mg ha^{-1})	Trees ha^{-1}	Elevation (m)
FCD-low	<46	<232	All elevations
FCD-low	<46	407-693	>2430
FCD-mod	<46	407-693	<2430
FCD-mod	<46	232-407	All elevations
FCD-high	<46	>693	<2430
FCD-high	>46	All tree densities	All elevations

burning area are themselves enhanced by the strong fire-induced surface winds that ventilate the combustion of solid fuel materials. Thus, the growth and energy release from any portion of these fires becomes dependent on the atmospheric circulations generated by the heat release from the entire fire.

This explanation is consistent with the changes in heat release patterns observed from September 5 to September 8 (Fig. 6). On September 5th, fire intensity was typical for most wildfires with heat concentrated on the fires perimeter. However, on the largest growth day (September 6th), this was pattern was reversed, with heat increasing towards the interior of the fire. Not only was the greatest heat concentrated away from the fire perimeter, but a significant amount of heat was still being generated within the fire perimeter from the previous day (Fig. 6). At the whole-fire scale, prolonged heat release from the interior would sustain the buoyant updrafts in the plume core that interact with the wind, moisture, and temperature profiles of the atmosphere. This is a classic pattern for a mass fire and the high amount of large, dead biomas created from the drought and bark beetle attack along with high tree density (that produced large amounts of crown fuels) were critical factors in developing mass fire behavior as anticipated by Stephens et al. (2018). Severe drought during this period exacerbated by climate change was also a contributing factor because it reduced fuel moistures to even lower levels that further adds to the vulnerability of these forests (Williams et al., 2022).

4.1. Management implications

Fire behavior exhibited by the Creek Fire during its initial progression is well outside the capabilities of current-generation fire models. Modeling initial spread of the Creek Fire with any conventional fire model will result in a dramatic under-prediction in spread rate and area burned because these models do not capture the physics that drove the

Fig. 9. Percentage of overlap area between forest condition departure classes (FCD) and high severity fire patches.

Fig. 10. ELMFIRE modeled progression of the Creek Fire (blue to red contours) compared to observed fire perimeter (black lines) from September 4 to 8, 2020. (a) September 5th 05:50 UTC (b) September 5th 21:42 UTC (c) September 6th 10:50 UTC (d) September 7th 05:33 UTC (e) September 7th 21:36 UTC (f) September 8th 21:40 UTC. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Creek Fire's initial spread including post-frontal combustion and fireatmosphere interactions. This outcome is particularly challenging to managers who always prioritize firefighter and public safety. With no operational fire model able to predict such an event, managers can easily underrepresent such events, particularly in areas that experienced considerable tree mortality. It should be noted, however, that extreme fire behavior associated with plume-dominated fire spread is not limited to areas with extensive pre-fire tree mortality (Povak et al., 2020). The potential for extreme fire behavior to cause great harm to human life was demonstrated when the Creek Fire necessitated the rescue of people by National Guard helicopters. The fire trapped visitors at Mammoth Pool Reservoir after it jumped the San Joaquin River and the US National Guard rescued >100 people from this location.

An important question regarding mass fire behavior exhibited by the

S.L. Stephens et al.

Creek Fire is whether the tree mortality event that preceded it could have been avoided or reduced in intensity or was it within the natural range of variation for these forests? To help answer this question we can learn from a severe drought that impacted the forests in southern California and northern Baja California from 1999 to 2002 (Minnich et al., 2016). This severe drought and bark beetle attack killed millions of trees in mixed conifer and pine dominated forests in the San Bernardino and Cleveland National Forests in the US but had a very different impact on Jeffrey pine (Pinus jeffreyi)-mixed conifer forests in the Sierra San Pedro Matrir (SSPM) in northern Baja California, Mexico (Stephens and Fule, 2005). Both of these forests are in the Peninsular Mountains with similar soils, topography, climate, past fire frequency, and tree species but the SSPM does not have any ponderosa pine but includes all other mixed conifer tree species (Stephens et al., 2003; Stephens and Gill, 2005; Dunbar-Irwin and Safford, 2016). Although these forests are similar ecologically their management histories are very different with the SSPM never being harvested and fire suppression beginning in 1970, versus on the US side of the border, extensive harvesting occurred along with 120 years of fire exclusion and suppression (Dunbar-Irwin and Safford, 2016; Rivera-Huerta et al., 2016).

In 1932 mixed Jeffrey pine forests in the San Bernardino Mountains had an average density of 95 trees ha⁻¹ (trees > 12.5 cm dbh) (Minnich et al., 1995); current tree density from the SSPM for trees > 10 cm dbh is 110 trees ha⁻¹ which is similar to that reported in the San Bernardino Mountains before large-scale fire suppression or harvesting (Stephens and Fule, 2005). In 1992, mixed Jeffrey pine forests in the San Bernardino Mountains had tree densities 79% larger than those in the early 1930s mainly because of fire suppression (Minnich et al., 1995). This dramatic change in forest density shaped the drought/bark beetle responses from these areas. Drought and bark beetle mortality (1999–2002) increased snag density in the SSPM by approximately 1.0 snag ha⁻¹ to an average of 5 ha⁻¹ (Stephens, 2004) but in southern California forests, snag density increased to 125 snags ha⁻¹ in many areas (Sims, 2004; Stephens and Fule, 2005).

Past forest management on the US side of the Peninsular Mountains predisposed these forests to a massive tree die-back but on the Mexican side of the border, the forests were able to incorporate these stresses with only modest mortality. Neither Californian tree mortality event (1999–2002 southern California or 2012–2016 southern Sierra Nevada) have historical analogs. Further evidence of the vulnerability of Sierra Nevada mixed conifer forests to severe mortality is provided by a recent study that found historic forests experienced very little competition versus today when 82–95% of mixed conifer forests are in the full occupancy or imminent mortality classes (North et al., 2022). When Sierra Nevada forests were subjected to drought and increased heat stress from climate change, tree defenses were compromised and millions of trees died but the resilient forests in the SSPM persisted (Stephens and Fule, 2005; Stephens and Gill, 2005).

Amazingly, when SSPM Jeffrey pine-mixed conifer forests burned in a wildfire the year after a severe drought ended (2003), the combination of drought/bark beetles and wildfire only killed 20% of the trees and the forest remains in a resilient condition today (Murphy et al., 2021). The good news is California mixed conifer and other frequent-fire adapted forests can become more resilient if we undertake forest restoration (Stephens et al., 2021) at the necessary scales (North et al., 2012; Hessburg et al., 2021; Prichard et al., 2021) and intensity (North et al., 2021,2022). The 2020 Creek Fire shows us how vulnerable our current forest conditions are to suffering high tree mortality and offering fuel conditions capable of generating firestorms and mass fires from which future forest recovery is questionable.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

We thank John Battles and Danny Foster for discussions related to this project and Chuck McHugh for assisting with the Fire Danger Rating System analysis. We also thank Zack Steel for helping to generate the fire severity spatial layer for the Creek Fire. This study was funded by the California Energy Commission's Eletrical Program Investment Charge Program (Grant# EPC-18-026). It does not nesessarily represent the views of the Energy Commission, its empoyees, or the State of California.

References

- Abatzoglou, J.T., Williams, A.P., 2016. Impact of anthropogenic climate change on
- wildfire across western US forests Proc. Nat. Acad. Sci. 113, 11770–11775. Babrauskas, V., 2006. Effective heat of combustion for flaming combustion of conifers.
- Can. J. For. Res. 36 (3), 659–663. Bernal, A.A., Stephens, S.L., Collins, B.M., Battles, J.J., 2022. Biomass stocks in
- California's fire-prone forests: mismatch in ecology and policy. Env. Res. Let. 17 (4), 044047.
- Bradshaw, L.S., Deeming, J.E., Burgan, R.E., Cohen, J.D., 1983. The 1978 National Fire-Danger Rating System: Technical Documentation, USDA Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report INT-169.
- Briones-Herrera, C.I., Vega-Nieva, D.J., Monjarás-Vega, N.A., Briseño-Reyes, J., López-Serrano, P.M., Corral-Rivas, J.J., Alvarado-Celestino, E., Arellano-Pérez, S., González, J.G., Ruiz-González, A.D., Jolly, W.M., Parks, S.A., 2020. Near real-time automated early mapping of the perimeter of large forest fires from the aggregation of VIIRS and MODIS active fires in Mexico. Rem. Sens. 12, 1–19.
- Brough, A., Gilbertson-Day, J.W., Napoli, J., Scott, J.H., 2020. A fuelscape for all land ownerships in the State of California. https://pyrologix.com/wp-content/uploads/ 2021/06/CAL_FuelscapeReport.pdf>.
- Canty, A., Ripley, B., 2017. boot: Bootstrap R (S-Plus) functions.
- Caprio, A., Swetnam, T.W., 1993. Historic fire regimes along an elevational gradient on the west 457 slope of the Sierra Nevada, California. In: 5th Proceedings: Symposium on 458 Fire in Wilderness and Park Management, Missoula, MT, pp. 173–179.
- Carrier, G.F., Fendell, F.E., Feldman, P.S., 1981. Criteria for onset of firestorms. In Hickman, R.G., Meier, C.A., 1983. Proceedings: 17th Asilomar Conference on Fire and Blast Effects of Nuclear Weapons (No. CONF-8305107-). Lawrence Livermore National Lab., CA (USA). pp. 60–65.

Carrier, G.F., Fendell, F.E., Feldman, P.S., 1985. Firestorms. J. Heat Transfer 107, 19-27.

- Collins, B.M., Stephens, S.L., 2010. Stand-replacing patches within a mixed severity fire regime: quantitative characterization using recent fires in a long-established natural fire area. Land.e Ecol. 25, 927939.
- Coop, J.D., Parks, S.A., Stevens-Rumann, C.S., Crausbay, S.D., Higuera, P.E., Hurteau, M. D., Tepley, A., Whitman, E., Assal, T., Collins, B.M., Davis, K.T., Dobrowski, S., Falk, D.A., Fornwalt, P.J., Fulé, P.Z., Harvey, B.J., Kane, V.R., Littlefield, C.E., Margolis, E.Q., North, M., Parisien, M.A., Prichard, S., Rodman, K.C., 2020. Wildfredriven forest conversion in western North American landscapes. Bioscience 70, 659–673.
- Countryman, C.M., 1964. Mass fires and fire behavior. U. S. Forest Service Research Paper PSW-19, Pacific Southwest Forest and Range Experiment Station, 53 pp.
- Di Blasi, C., Branca, C., Santoro, A., Gonzalez Hernandez, E., 2001. Pyrolytic behavior and products of some wood varieties. Combust. Flame 124 (1-2), 165–177.
- Dixon, G., Dixon, C., Havis, R., Keyser, C., Rebain, S., Smith-Mateja, E., Vandendriesche, D., 2008. Western Sierra Nevada (WS) Variant Overview – Forest Vegetation Simulator. Internal Rep. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Forest Management Service Center. 88p.
- Dunbar-Irwin, M., Safford, H.D., 2016. Climatic and structural comparison of yellow pine and mixed-conifer forests in northern Baja California (Mexico) and the eastern Sierra Nevada (California, USA). For. Ecol. Manage. 363, 252–266.
- Fettig, C.J., Mortenson, L.A., Bulaon, B.M., Foulk, P.B., 2019. Tree mortality following drought in the central and southern Sierra Nevada, California, U.S. For. Ecol. Manage. 432, 164–178. https://doi.org/10.1016/j.foreco.2018.09.006.
- Finney, M.A., 1998. FARSITE, Fire Area Simulator-model development and evaluation, No. 4. US Department of Agriculture Forest Service, Rocky Mountain Research Station.

Finney, M.A., McAllister, S.S., 2011. A review of fire interactions and mass fires. J. Combust. 2011, 1–14.

Finney, M.A., McAllister, S.S., Forthofer, J.M., Grumstrup, T.P., 2021. Wildland Fire Behaviour: Dynamics. CSIRO PUBLISHING, Principles and Processes, p. 360.

- Girvetz, E.H., Greco, S.E., 2007. How to define a patch: a spatial model for hierarchically delineating organism-specific habitat patches. Landscape Ecol. 22 (8), 1131–1142.
- Goodwin, M.J., Zald, H.S.J., North, M.P., Hurteau, M.D., 2021. Climate-driven tree mortality and fuel aridity increase wildfire's potential heat flux. Geophys. Res. Lett. 48 (24).
- Hagmann, R.K., Hessburg, P.F., Prichard, S.J., Povak, N.A., Brown, P.M., Fulé, P.Z., Keane, R.E., Knapp, E.E., Lydersen, J.M., Metlen, K.L., Reilly, M.J., Sánchez Meador, A.J., Stephens, S.L., Stevens, J.T., Taylor, A.H., Yocom, L.L., Battaglia, M.A., Churchill, D.J., Daniels, L.D., Falk, D.A., Henson, P., Johnston, J.D., Krawchuk, M.A., Levine, C.R., Meigs, G.W., Merschel, A.G., North, M.P., Safford, H.D., Swetnam, T. W., Waltz, A.E.M., 2021. Evidence for widespread changes in the structure,

S.L. Stephens et al.

composition, and fire regimes of western North American forests. Ecol. Appl. 31 (8), e02431.

Hessburg, P.F., Prichard, S.J., Hagmann, R.K., Povak, N.A., Lake, F.K., 2021. Wildfire and climate change adaptation of western North American forests: a case for intentional management. Ecol. Appl. 31 (8), e02432.

Huang, S., Ramirez, C., McElhaney, M., Evans, K., 2018. F3: Simulating spatiotemporal forest change from field inventory, remote sensing, growth modeling, and management actions. For. Ecol. Manage. 415–416, 26–37.

Huang, S., Ramirez, C., McElhaney, M., Clark, C., Yao, Z., 2019. Quantifying Spatiotemporal post-disturbance recovery using field inventory, tree growth, and remote sensing. Earth Sp. Sci. 6, 489–504, 10.1029/2018EA000489.

Kane, V.R., Cansler, C.A., Povak, N.A., Kane, J.T., McGaughey, R.J., Lutz, J.A., Churchill, D.J., North, M.P., 2015. Mixed severity fire effects within the Rim fire: relative importance of local climate, fire weather, topography, and forest structure. For. Ecol. Manage. 358, 62–79.

Kilgore, B.M., Taylor, D., 1979. Fire history of a sequoia-mixed conifer forest. Ecol. 60 (129–554), 142.

Knight, C.A., Cogbill, C.V., Potts, M.D., Wanket, J.A., Battles, J.J., 2020. Settlement-era forest structure and composition in the Klamath Mountains: reconstructing a historical baseline. Ecosphere 11 (9), e03250.

Krasnow, K.D., Fry, D.L., Stephens, S.L., 2017. Spatial, temporal and latitudinal components of historical fire regimes in mixed conifer forests. Califor. J. Biogeogr. 44, 1239–1253.

Lareau, N.P., Nauslar, N.J., Bentley, E., Roberts, M., Emmerson, S., Brong, B., Mehle, M., Wallman, J., 2022. Fire-generated tornadic vortices. Bull. Am. Meteorol. Soc.

Lautenberger, C., 2013. Wildland fire modeling with an eulerian level set method and automated calibration. Fire Saf. J. 62, 289–298.

Lautenberger, C., 2017. Mapping areas at elevated risk of large-scale structure loss using monte carlo simulation and wildland fire modeling. Fire Saf. J. 91, 768–775.

Long, J.W., Goode, R.W., Gutteriez, R.J., Lackey, J.L., Anderson, M.K., 2017. Managing California black oak for Tribal ecocultural restoration. J. Forest. 115, 426–434.

Long, J.W., Lake, F.K., Goode, R.W., 2021. The importance of Indigenous cultural burning in forested regions of the Pacific West, USA. For. Ecol. Manage. 500, 119597.

Lydersen, J.M., Collins, B.M., Brooks, M.L., Matchett, J.R., Shive, K.L., Povak, N.A., Kane, V.R., Smith, D.F., 2017. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event. Ecol. Appl. 27 (7), 2013–2030.

Lydersen, J.M., Collins, B.M., Coppoletta, M., Jaffe, M.R., Northrop, H., Stephens, S.L., 2019. Fuel dynamics and reburn severity following high-severity fire in a Sierra Nevada, USA, mixed-conifer forest. Fire Ecol. 15 (1), 1–14.

Lydersen, J.M., North, M.P., Collins, B.M., 2014. Severity of an uncharacteristically large wildfire, the Rim Fire, in forests with relatively restored frequent fire regimes. For. Ecol. Manage. 328, 326–334.

Miller, J.D., Thode, A.E., 2007. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 109, 66–80.

Miller, J.D., Safford, H.D., Crimmins, M., Thode, A.E., 2009. Quantitative evidence for increasing forest fire severity in the Sierra Nevada and Southern Cascade Mountains, California and Nevada, USA. Ecosystems 12, 16–32.

Miller, J.D., 2017. R5: VegBurnSeverityBA edition 18_1. USDA Forest Service, Pacific Southwest Region, Fire and Aviation Management. [dataset].

Minnich, R.A., Barbour, M.G., Burk, J.H., Fernau, R.F., 1995. Sixty years of change in Californian conifer forests of the San Bernardino Mountains. Conserv. Biol. 9, 902–914.

Minnich, R.A., Goforth, B.R., Paine, T.D., 2016. Follow the water: extreme drought and the conifer forest pandemic of 2002–2003 along the California borderland. In: Paine, T.D., Lieutier, F. (Eds.), Insects and Diseases of Mediterranean Forest Systems. Springer International Publishing, Switzerland, pp. 859–890.

Murphy, J.S., York, R., Rivera Huerta, H., Stephens, S.L. 2021. Characteristics and metrics of resilient forests in the Sierra de San Pedro Martír, Mexico. For. Ecol. Manage. 482, 118864.

National Interagency Fire Center. 2020. ">https://ftp.wildfire.gov/public/incident_specific_data/calif_s/!2020_Incidents/CA-SNF-001391_Creek/IR/NIROPS/>">https://ftp.wildfire.gov/public/incident_specific_data/calif_s/!2020_Incidents/CA-SNF-001391_Creek/IR/NIROPS/>">https://ftp.wildfire.gov/public/incident_specific_data/calif_s/!2020_Incidents/CA-SNF-001391_Creek/IR/NIROPS/>">https://ftp.wildfire.gov/public/incident_specific_data/calif_s/!2020_Incidents/CA-SNF-001391_Creek/IR/NIROPS/>">https://ftp.wildfire.gov/public/incidents/CA-SNF-001391_Creek/IR/NIROPS/>">https://ftp.wildfire.gov/public/incidents/CA-SNF-001391_Creek/IR/NIROPS/>">https://ftp.wildfire.gov/public/incidents/CA-SNF-001391_Creek/IR/NIROPS/>">https://ftp.wildfire.gov/public/incidents/CA-SNF-001391_Creek/IR/NIROPS/>">https://ftp.wildfire.gov/public/incidents/CA-SNF-001391_Creek/IR/NIROPS/>">https://ftp.wildfire.gov/public/incidents/CA-SNF-001391_Creek/IR/NIROPS/

National Oceanic and Atmospheric Administration, 2020. <https://www.nco.ncep.noaa. gov/pmb/products/rtma/>.

National Wildfire Coordinating Group, 2020b. https://fsapps.nwcg.gov/afm/data/fireptdata/modis_fire_2020_366_conus_shapefile.zip.

National Wildfire Coordinating Group, 2020c. https://fsapps.nwcg.gov/afm/data_viirs_iband_fire_2020_366_conus_shapefile.zip.

Nelson Jr, R.M., 2003. Reaction times and burning rates for wind tunnel headfires. Int. J. Wildland Fire 12, 195–211.

NIFC, 2020. National Large Incident Year-to-Date Report. https://gacc.nifc.gov/sacc/predictive/intelligence/NationalLargeIncidentYTDReport.pdf>.

North, M., Collins, B.M., Stephens, S., 2012. Using fire to increase the scale, benefits, and future maintenance of fuels treatments. J. For. 110 (7), 392–401.

North, M.P., York, R.A., Collins, B.M., Hurteau, M.D., Jones, G.M., Knapp, E.E., Kobziar, L., McCann, H., Meyer, M.D., Stephens, S.L. Tompkins, R.E., 2021. Pyrosilviculture needed for landscape resilience of dry western United States forests. J. For. 119, 520–544.

North, M.P., Tompkins, R.E., Bernal, A.A., Collins, B.M., Stephens, S.L., York, R.A. 2022. Operational resilience in western US frequent-fire forests. For. Ecol. Manage. 507, 120004. Parks, S.A., Holsinger, L.M., Voss, M.A., Loehman, R.A., Robinson, N.P., 2018. Mean composite fire severity metrics computed with google earth engine offer improved accuracy and expanded mapping potential. Rem. Sens. 10, 1–15.

Peterson, D.A., Hyer, E.J., Campbell, J.R., Solbrig, J.E., Fromm, M.D., 2017. A conceptual model for development of intense pyrocumulonimbus in western North America. Mon. Weather Rev. 145 (6), 2235–2255.

Pitts, W.M., 1991. Wind effects on fires. Prog. Energy Combust. Sci. 17, 83–134. Pebesma, E., 2018. Simple features for R: Standardized support for spatial vector data. R

J. 10.1, 439–446. https://doi.org/10.32614/RJ-2018-009">https://doi.org/10.32614/RJ-2018-009>. Povak, N.A., Kane, V.R., Collins, B.M., Lydersen, J.M., Kane, J.T., 2020. Multi-scaled drivers of severity patterns vary across land ownerships for the 2013 Rim Fire, California. Land. Ecol. 35, 293–318.

Prichard, S.J., Hessburg, P.F., Hagmann, R.K., Povak, N.A., Dobrowski, S.Z., Hurteau, M. D., Kane, V.R., Keane, R.E., Kobziar, L.N., Kolden, C.A., North, M., Parks, S.A., Safford, H.D., Stevens, J.T., Yocom, L.L., Churchill, D.J., Gray, R.W., Huffman, D.W., Lake, F.K., Khatri-Chhetri, P., 2021. Adapting western North American forests to climate change and wildfires: 10 common questions. Ecol. Appl. 31 (8).

Rivera-Huerta, H., Safford, H.D., Miller, J.D., 2016. Patterns and trends in burned area and fire severity from 1984 to 2010 in the Sierra de San Pedro Martir, Baja California. Mexico. Fire Ecol. 12, 52–72.

Rothermel, R.C. 1972. A mathematical model for predicting fire spread in wildland fuels. USDA For. Serv. Res. Pap. INT-115.

Safford, H.D., Stevens, J.T., 2017. Natural range of variation for yellow pine and mixedconifer forests in the Sierra Nevada, southern Cascades, and Modoc and Inyo National Forests, California, USA. General Technical Report PSWGTR-256. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, California, USA.

Safford, H.D., Paulson, A.K., Steel, Z.L., Young, D.J.N., Wayman, R.W., 2022. The 2020 California fire season: a year like no other, a return to the past or a harbinger of the future? Glob. Ecol. Biogeogr. in press.

Sanchez, M.A., 2019. patchwoRk: patch delineation package. https://github.com/bi0m3trics/patchwoRk>.

Sims, T., 2004. Dead tree count totals in 2004. San Bernardino and San Jacinto Mountains Vegetation Mortality Project, San Bernardino National Forest, CALMAST, and ESRI, Redlands, CA.

Sánchez Meador, A, 2019. patchwoRk: Patch Delineation Package. R package version 1.0.0. https://github.com/bi0m3trics/patchwoRk.

Stephens, S.L., 2004. Fuel loads, snag density, and snag recruitment in an unmanaged Jeffrey pine-mixed conifer forest in northwestern Mexico. For. Ecol. Manage. 199, 103–113.

Stephens, S.L., Skinner, C.N., Gill, S.J., 2003. Dendrochronology-based fire history of Jeffrey pine-mixed conifer forests in the Sierra San Pedro Martir. Mexico. Can. J. For. Res. 33 (6), 1090–1101.

Stephens, S.L., Fule, P.Z., 2005. Western pine forests with continuing frequent fire regimes: possible reference sites for management. J. For. 103, 357–362.

Stephens, S.L., Gill, S.J., 2005. Forest structure and mortality in an old-growth Jeffrey pine-mixed conifer forest in northwestern Mexico. For. Ecol. Manage. 205 (1-3), 15–28.

- Stephens, S.L., Moghaddas, J.J., Ediminster, C., Fiedler, C.E., Hasse, S., Harrington, M., Keeley, J.E., McIver, J.D., Metlen, K., Skinner, C.N., Youngblood, A., 2009. Fire treatment effects on vegetation structure, fuels, and potential fire severity in western U.S. forests. Ecol. Appl. 19, 305–320.
- Stephens, S.L., Lydersen, J.M., Collins, B.M., Fry, D.L., Meyer, M.D., 2015. Historical and current landscape-scale ponderosa pine and mixed-conifer forest structure in the Southern Sierra Nevada. Ecosphere 6 (5), art 79.

Stephens, S.L., Collins, B.M., Fettig, C.J., Finney, M.A., Hoffman, C.M., Knapp, E.E., North, M.P., Safford, H., Wayman, R.B., 2018. Drought, tree mortality, and wildfire in forests adapted to frequent fire. Bioscience 68, 77–88.

Stephens, S.L., Battaglia, M.A., Churchill, D.J., Collins, B.M., Coppoletta, M., Hoffman, C. M., Lydersen, J.M., North, M.P., Parsons, R.A., Ritter, S.M., Stevens, J.T., 2021. Forest restoration and fuels reduction: Convergent or divergent? Bioscience 71, 85–101.

Stevens, J.T., Collins, B.M., Miller, J.D., North, M.P., Stephens, S.L., 2017. Changing spatial patterns of stand-replacing fire in California mixed-conifer forests. For. Ecol. Manage. 406, 28–36.

- Stevens, J.T., Lydersen, J.M., Collins, B.M., 2021. Postfire Restoration Framework for National Forests in California Appendix 4: Burn Severity Spatial Analyses. Meyer, M. D., Long, J.W., Safford, H.D. (Eds.). General Technical Report PSW-GRT-270. pp. 175–182.
- Therneau, T., Atkinson, B., 2019. rpart: Recursive partitioning and regression trees. https://cran.r-project.org/package=rparts.

United States Department of Agriculture National Agriculture Imagery Program. NAIP 2020 Natural Color, California. California Department of Fish and Wildlife [image].

United States Forest Service, 2020. <https://www.wfas.net/index.php/national-fuelmoisture-database-moisture-drought-103>.

- Waigl, C.F., Stuefer, M., Prakash, A., Ichoku, C., 2017. Detecting high and low-intensity fires in Alaska using VIIRS I-band data: an improved operational approach for high latitudes. Rem. Sens. Environ. 199, 389–400.
- Westerling, A.L., 2016. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Philos. Trans. Roy. Soc. B 371, 20150178.

Williams, A.P., Cook, B.I., Smerdon, J.E., 2022. Rapid intensification of the emerging southwestern North American megadrought in 2020–2021. Nat. Clim. Change 12 (3), 232–234.

January 15, 2025

Steven E. White Director, Fresno County Public Works and Planning 2220 Tulare Street, 8th Floor Fresno, CA 93721

Subject: Support for Fresno County's Climate Adaptation Planning Grant Application

Dear Mr. White,

I want to express my support for the County of Fresno's application for a Caltrans Climate Adaptation Planning Grant to explore transportation infrastructure resiliency in the communities I represent.

The residents of Clovis are vulnerable to flooding, drought, wildfire, and tree mortality, among other climate related issues. These climate risks can cause roads to close, cutting residents off from essential services such as health care, school, work, food and sanitation, as well as access to the urban areas of Fresno and Clovis which can have more supplies than the more rural communities. These vital services often require long trips to access, meaning that the roads are essential to life in this area. This grant would fund a study to find effective mitigation solutions to the effects of climate change on the region's transportation infrastructure, allowing roads to remain open to residents, commerce, and natural resources.

Not only do increasingly frequent floods, wildfires, and drought impact the daily lives of residents on the front lines of these changing conditions, but also trucks moving commodities across the region. The roads in this area are often the lone point of access for supplies coming in and out of these communities, as well as power infrastructure for Southern California Edison. Climate trends predict earlier snow melts that will dramatically impact the water supply for the entire state of California, impacting agriculture downstream and drinking water for residents statewide. As this is a critical issue for the residents of this region and the well-being of the state, the sooner we can start preparing our infrastructure for future conditions, the better equipped the residents and the state will be to withstand them.

I am committed to working with the County of Fresno to help facilitate public engagement and hear the concerns of residents so that we may find solutions that work best and carry us forward.

Sincerely,

runa

Vong Mouanoutoua Mayor, City of Clovis

2035 Tulare St., Ste. 201 tel 559-233-4148 Fresno, California 93721 fax 559-233-9645 www.fresnocog.org

January 15, 2025

Steven E. White Director, Fresno County Public Works and Planning 2220 Tulare Street, 8th Floor Fresno, CA 93721

Subject: Support for Fresno County's Climate Adaptation Planning Grant Application

Mr. White,

Fresno Council of Governments supports the County of Fresno's Caltrans Climate Adaptation Planning Grant application to explore transportation infrastructure resiliency in the county's eastern region.

Fresno County's eastern region is vulnerable to flooding, drought, wildfire, and tree mortality, among other climate-related issues. These climate risks can cause roads to close, cutting residents off from essential services such as health care, school, work, food and sanitation, as well as access to the urban areas of Fresno and Clovis, which have more supplies than the rural communities. These vital services often require long trips to access, meaning that the roads are essential to life in this area. This grant would fund a study to find effective mitigation solutions to the climate change effects on the region's transportation infrastructure, allowing roads to remain open to residents, commerce, and natural resources.

Increasingly frequent floods, wildfires, and drought impact not only impact our residents' daily lives but they also affect trucks moving commodities across the region. The roads in this area are often the lone point of access for supplies coming in and out of these communities, as well as power infrastructure for Southern California Edison. Climate trends predict earlier snow melts that will dramatically impact the water supply for the entire state of California, impacting agriculture downstream and drinking water for residents statewide. As this is a critical issue for our residents and the well-being of the State, the sooner we can start preparing our infrastructure for future conditions, the better equipped our residents and the State will be to withstand them.

I am committed to working with the County of Fresno to help facilitate public engagement and hear the concerns of residents so that we may find solutions that work best and carry us forward.

Sincerely,

Robert Phipps Executive Direcctor Fresno Council of Governments

4886 East Jensen Avenue Fresno, California 93725

Tel: 559.237.5567 Fax: 559.237.5560

> www.krcd.org @kingsrivercd

January 21, 2025

Steven E. White Director, Fresno County Public Works and Planning 2220 Tulare Street, 8th Floor Fresno, CA 93721

Re: Support for Fresno County's Climate Adaptation Planning Grant Application

Dear Mr. White:

On behalf of the Kings River Conservation District, J want to express my support for the County of Fresno's application for a Caltrans Climate Adaptation Planning Grant to explore transportation infrastructure resiliency in the communities I represent.

The service area of the Kings River Conservation District is vulnerable to flooding, drought, wildfire, and tree mortality, among other climate related issues. Flooding is of particular concern for the District, which is entrusted with responsibility for managing water, energy, and environmental resources in this region. This grant would fund a study to find effective mitigation solutions to the effects of climate change on the region's transportation infrastructure, which is directly tied to the goals of the District.

Increasingly intense wet and dry seasons in the Kings River service area have profound impacts on the water supply from the Kings River. Drought exacerbates overdrafting of groundwater resources, and intense rains and snow melts can cause floods that overwhelm the capabilities to recharge these resources. With climate trends predicting intensifying extremes, it is crucial that the infrastructure of this region be prepared to accommodate the realities of the future. Finding effective mitigation solutions can protect natural resources as well as the people and industry that depend on the Kings River, so the sooner we act, the better equipped the region will be to withstand them.

Sincerely,

M.M.M.

David M. Merritt General Manager

DMM/BS/dmr

File: 300.05.02 L25-0010

BOARD OF DIRECTORS

Division I, CHRIS KAPHEIM, Dinuba & Division II, MASARU YOSHIMOTO, Fowier & Division III, ANTHONY NONINI, Frasno & Division IV, MARK McKEAN, Riverdale & Division V, D. PAUL STANFIELD, Hanford Division VI, CEIL W. HOWE, IR., Stratford & Division VII, JENIFER MARSHALL, Sanger

OFFICERS

A thriving Community Una próspera Comunidad

January 15, 2025

Steven E. White Director, Fresno County Public Works and Planning 2220 Tulare Street, 8th Floor Fresno, CA 93721

Subject: Support for Fresno County's Climate Adaptation Planning Grant Application

Dear Mr. White,

On behalf of the city of Parlier, I want to express my support for the County of Fresno's application for a Caltrans Climate Adaptation Planning Grant to explore transportation infrastructure resiliency in the communities I represent.

The residents of Parlier are vulnerable to flooding, drought, wildfire, and tree mortality, among other climate related issues. These climate risks can cause roads to close, cutting residents off from essential services such as health care, school, jobs, food and sanitation, as well as access to the urban areas of Fresno and Clovis which can have more supplies than the more rural communities. Road closures also impact the agricultural economy which is a major concern for the residents of the region. This grant would fund a study to find effective mitigation solutions to the effects of climate change on the region's transportation infrastructure, allowing roads to remain open to residents, commerce, and natural resources.

Not only do increasingly frequent floods, wildfires, and drought impact the daily lives of residents on the front lines of these changing conditions, but also trucks moving commodities across the region. Climate trends predict earlier snow melts that will dramatically impact the water supply for the entire state of California, impacting agriculture downstream and drinking water for residents statewide. As this is a critical issue for the residents of this region and the well-being of the state, the sooner we can start preparing our infrastructure for future conditions, the better equipped the residents and the state will be to withstand them.

1 am committed to working with the County of Fresno to help facilitate public engagement and hear the concerns of residents so that we may find solutions that work best and carry us forward.

Sinderel Alma Beltran

Mayor

City of Reedley

OFFICE OF THE MAYOR 1717 Ninch Street Reedley, Co. 93664 (668) 537-4200 mt. 212

January 15, 2025

Steven E. White Director, Fresho County Public Works and Planning 2220 Tulare Street, 8th Floor Fresho, CA 93721

Subject: Support for Fresho County's Climate Adaptation Planning Grant Application

Dear Mr. White,

I wholeheartedly support the County of Fresno's application for a Caltrans Climate Adaptation Planning Grant to explore transportation infrastructure resiliency in the community i represent.

The residents of Reedley are vulnerable to flooding, drought, wildfire, and tree mortality, among other climate related issues. These climate risks can cause roads to close, cutting residents off from essential services such as health care, school, jobs, food and sanitation, as well as access to the urban areas of Fresno and Clovis which can have more supplies than the more rural communities. Road closures also impact the agricultural economy which is a major concern for the residents of the region. This grant would fund a study to find effective mitigation solutions to the effects of climate change on the region's transportation infrastructure, allowing roads to remain open to residents, commerce, and natural resources.

Not only do increasingly frequent floods, wildfires, and drought impact the daily lives of residents on the front lines of these changing conditions, but also trucks moving commodities across the region. Climate trends predict earlier snow melts that will dramatically impact the water supply for the entire state of California, impacting agriculture downstream and drinking water for residents statewide. As this is a critical issue for the residents of this region and the well-being of the state, the sconer we can start preparing our infrastructure for future conditions, the better equipped the residents and the state will be to withstand them.

I am committed to working with the County of Fresho to help facilitate public engagement and hear the concerns of residents so that we may find solutions that work best and carry us forward.

Sincerely.

Matthew Tuttle Mayor of Reedley

Creek Fire in eastern Fresno County, September 2020.

Creek Fire surrounding a bridge under construction in September, 2020

Fire damage on Alder Springs Road near Auberry in Eastern Fresno County.

PHOTOS OF DAMAGED ROADWAYS IN EASTERN FRESNO COUNTY

Washout due to flooding on Anchor Ave near Orange Cove in eastern Fresno County.

Flood damage on Dunlap Road in eastern Fresno County.

Flood damage on Ruth Hill Road in eastern Fresno County.

Rockslide due to storms on Highway 168 in eastern Fresno County.

Washout due to storms on Italian Bar Road in eastern Fresno County.

Storm damage on Todd Eymann Road near Miramonte in eastern Fresno County.

Washout due to flooding on Old Millerton Road in eastern Fresno County.

Mudslide on Trimmer Springs Road in eastern Fresno County.

PHOTOS OF DAMAGED ROADWAYS IN EASTERN FRESNO COUNTY

Storm damage on Hintington Lake Road in eastern Fresno County.

Storm damage on Hogback Road in eastern Fresno County.

Flooding due to storms at Cricket Hollow Park near Reedley in eastern Fresno County.

Levee breach due to storms near Sanger in eastern Fresno County.